日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

18.已知過(guò)點(diǎn)A(1,$\frac{3}{2}$)的橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦點(diǎn)為F,且AF所在直線(xiàn)的斜率為$\frac{3}{4}$.
(1)求橢圓的C的方程;
(2)若存在直線(xiàn)l與橢圓交于兩點(diǎn)M、N(均異于點(diǎn)A),使得∠MAN=90°,求證:直線(xiàn)l過(guò)定點(diǎn).

分析 (1)由題意,列出關(guān)于a,b,c的方程組,解得即可,則橢圓方程可求;
(2)設(shè)直線(xiàn)l:x=my+n點(diǎn)M(x1,y1),N(x2,y2),與橢圓方程聯(lián)立,利用根與系數(shù)的關(guān)系及$\overrightarrow{AM}•\overrightarrow{AN}$=0,求出x=m(y+$\frac{3}{14}$)+$\frac{1}{7}$,即可得到直線(xiàn)過(guò)定點(diǎn).

解答 解:(1)設(shè)橢圓的方程為:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),則由已知可得:$\left\{\begin{array}{l}{\frac{1}{{a}^{2}}+\frac{\frac{9}{4}}{{b}^{2}}=1}\\{{a}^{2}={b}^{2}+{c}^{2}}\\{\frac{\frac{3}{2}}{1+c}=\frac{3}{4}}\end{array}\right.$,解得a=2,b=$\sqrt{3}$,c=1,
則橢圓的方程為:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,
(2)設(shè)直線(xiàn)l:x=my+n點(diǎn)M(x1,y1),N(x2,y2).直線(xiàn)l與橢圓C的方程聯(lián)立,消去x得,(4+3m2)y2+8mny+3m2-12=0,
∴y1+y2=-$\frac{6mn}{3{m}^{2}+4}$,y1y2=$\frac{3{n}^{2}-12}{3{m}^{2}+4}$,①

同理可得:x1+x2=$\frac{8n}{3{m}^{2}+4}$,x1x2=$\frac{4{n}^{2}-12{m}^{2}}{3{m}^{2}+4}$,②,
又由∠MAN=90°,則$\overrightarrow{AM}•\overrightarrow{AN}$=0,
∴(x1-1,y1-$\frac{3}{2}$)•(x2-1,y2-$\frac{3}{2}$)=x1x2-(x1+x2)+y1y2-$\frac{3}{2}$(y1+y2)+$\frac{13}{4}$=0③
將①②代入③整理得:3($\frac{3}{2}$m+n)2+4(n-1)2-9m2-3=0,
也就是3($\frac{3}{2}$m+n-1)($\frac{3}{2}$m+n+1)+4(n-1-$\frac{3}{2}$m)(n-1+$\frac{3}{2}$m)=0,
由于點(diǎn)A不在直線(xiàn)l上,則$\frac{3}{2}$m+n-1≠0則,
3($\frac{3}{2}$m+n+1)+4(n-1-$\frac{3}{2}$m)=0,整理n=$\frac{2+3m}{14}$,
則x=my+n=my+$\frac{2+3m}{14}$=m(y+$\frac{3}{14}$)+$\frac{1}{7}$,
所以直線(xiàn)l過(guò)定點(diǎn)($\frac{1}{7}$,-$\frac{3}{14}$)

點(diǎn)評(píng) 本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查了直線(xiàn)與圓錐曲線(xiàn)位置關(guān)系的應(yīng)用,訓(xùn)練了存在性問(wèn)題的求解方法,考查了數(shù)形結(jié)合的思想、推理能力和計(jì)算能力,屬難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2017屆安徽合肥一中高三上學(xué)期月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

為偶函數(shù),則的解集為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年河北正定中學(xué)高二上月考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

在斜△中,角所對(duì)的邊長(zhǎng)分別為,且△的面積為1,則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若實(shí)數(shù)x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x+2y<6}\\{3x-y<3}\\{2x+y>0}\\{x∈Z}\\{y∈Z}\end{array}\right.$,則z=x+y的最大值是(  )
A.2B.3C.4D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.曲線(xiàn)y=$\sqrt{1-(x-1)^{2}}$與x軸所圍成的區(qū)域的面積為(  )
A.πB.$\frac{π}{2}$C.$\frac{3π}{8}$D.$\frac{π}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.把14個(gè)棱長(zhǎng)為1的正方體,在地面上堆疊成如圖所示的幾何體,然后將露出的表面部分染成紅色.那么紅色部分的面積為(  )
A..21B..24C..33D..37

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,圓C1的極坐標(biāo)方程為ρ=4sinθ,圓C2的極坐標(biāo)方程為$ρ=4cos(θ+\frac{π}{6})$,已知C1與C2交于A,B兩點(diǎn),點(diǎn)B位于第一象限.
(Ⅰ)求點(diǎn)x和點(diǎn)y的極坐標(biāo);
(Ⅱ)設(shè)圓C1的圓心為C1,點(diǎn)P是直線(xiàn)BC1上的動(dòng)點(diǎn),且滿(mǎn)足$\overrightarrow{BP}$=m$\overrightarrow{B{C}_{1}}$,若直線(xiàn)C1P的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}-\frac{\sqrt{3}}{2}λ}\\{y=1+\frac{1}{2}λ}\end{array}$(λ為參數(shù)),則m:λ的值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E是棱BB1上的動(dòng)點(diǎn),F(xiàn)是棱CD的中點(diǎn),則四面體A1D1EF體積的最大值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.己知函數(shù)f(x)=sinx($\sqrt{3}$cosx+sinx)+$\frac{1}{2}$.
(Ⅰ)若x∈[0,π],求f(x)遞增區(qū)間;
(Ⅱ)設(shè)△ABC的內(nèi)角A,B,C的對(duì)應(yīng)邊分別為a,b,c,且c=$\sqrt{3}$,f(C)=2,sinB=2sinA,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 男人的天堂久久 | 久久精品国产99国产 | 欧美成年黄网站色视频 | 国产精品久久一区二区三区 | 日韩在线观看一区 | 亚洲国产成人av好男人在线观看 | 中文字幕一区在线观看 | 日韩视频一区二区三区 | 成人乱淫av日日摸夜夜爽节目 | 欧美日韩综合精品 | 国产乱精品一区二区三区视频了 | 四虎影院在线免费播放 | 日日操夜 | 国产三级视频 | 成人精品| 在线观看国产小视频 | 97久久超碰国产精品电影 | 国产免费一区二区 | 日本一区二区不卡视频 | 欧美一区二区三区在线 | 欧美国产日韩在线观看 | 中文一区二区 | 狠狠躁夜夜躁人人爽天天高潮 | 国产九九九精品 | 色综合免费 | 越南性xxxx精品hd | 国产精品视频播放 | 91在线视频播放 | 中文 日韩 欧美 | 狠狠久 | 久久久精 | 日韩成人激情 | 国产精品不卡 | 久久2018 | 久久美女视频 | 精品无人乱码区1区2区3区 | 国产中文一区二区三区 | 国产欧美日本 | 先锋资源久久 | 国产精品久久久久久久久久久久 | 日韩在线精品 |