【題目】已知橢圓的一個(gè)頂點(diǎn)和兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓
交于
、
兩點(diǎn),試問,是否存在
軸上的點(diǎn)
,使得對任意的
,
為定值,若存在,求出
點(diǎn)的坐標(biāo),若不存在,說明理由.
【答案】(1);(2)存在點(diǎn)
使得
為定值.
【解析】
試題(1)橢圓的標(biāo)準(zhǔn)方程是,則本題中有
,已知三角形的面積為4,說明
,這樣可以求得
;(2)存在性命題的解法都是假設(shè)存在,然后想辦法求出
.下面就是想法列出關(guān)于
的方程,本題是直線與橢圓相交問題,一般方法是設(shè)交點(diǎn)為
,把直線方程
代入橢圓方程交化簡為
,則有
,
,而
,就可用
表示,這個(gè)值為定值,即與
無關(guān),分析此式可得出結(jié)論..
試題解析:(1)設(shè)橢圓的短半軸為,半焦距為
,
則,由
得
,
由解得
,則橢圓方程為
. (6分)
(2)由得
設(shè)由韋達(dá)定理得:
=
==
, (10分)
當(dāng),即
時(shí),
為定值,所以,存在點(diǎn)
使得
為定值(14分).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩定點(diǎn)F1(﹣1,0),F(xiàn)2(1,0),且是|PF1|與|PF2|的等差中項(xiàng),則動(dòng)點(diǎn)P的軌跡是( )
A. 橢圓 B. 雙曲線 C. 拋物線 D. 線段
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等差數(shù)列的前
項(xiàng)和為
,數(shù)列
滿足:
,
,當(dāng)
時(shí),
,且
,
,
成等比數(shù)列,
.
(1)求數(shù)列,
的通項(xiàng)公式;
(2)求證:數(shù)列中的項(xiàng)都在數(shù)列
中;
(3)將數(shù)列、
的項(xiàng)按照:當(dāng)
為奇數(shù)時(shí),
放在前面:當(dāng)
為偶數(shù)時(shí),
放在前面進(jìn)行“交叉排列”,得到一個(gè)新的數(shù)列:
,
,
,
,
,
,…這個(gè)新數(shù)列的前
和為
,試求
的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一袋中有大小、形狀相同的2個(gè)白球和10個(gè)黑球,從中任取一球.如果取出白球,則把它放回袋中;如果取出黑球,則該球不再放回,另補(bǔ)一個(gè)白球放到袋中.在重復(fù)次這樣的操作后,記袋中的白球個(gè)數(shù)為
.
(1)求;
(2)設(shè),求
;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,直線l的參數(shù)方程為
(
為參數(shù)),曲線
的方程為
.以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線的極坐標(biāo)方程;
(2)曲線分別交直線和曲線
于點(diǎn)
,求
的最大值及相應(yīng)的
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,
且滿足:
(1)證明:是等比數(shù)列,并求數(shù)列
的通項(xiàng)公式.
(2)設(shè),若數(shù)列
是等差數(shù)列,求實(shí)數(shù)
的值;
(3)在(2)的條件下,設(shè) 記數(shù)列
的前
項(xiàng)和為
,若對任意的
存在實(shí)數(shù)
,使得
,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場為了了解顧客的購物信息,隨機(jī)在商場收集了位顧客購物的相關(guān)數(shù)據(jù)如下表:
一次購物款(單位:元) | |||||
顧客人數(shù) |
統(tǒng)計(jì)結(jié)果顯示位顧客中購物款不低于
元的顧客占
,該商場每日大約有
名顧客,為了增加商場銷售額度,對一次購物不低于
元的顧客發(fā)放紀(jì)念品.
(Ⅰ)試確定,
的值,并估計(jì)每日應(yīng)準(zhǔn)備紀(jì)念品的數(shù)量;
(Ⅱ)現(xiàn)有人前去該商場購物,求獲得紀(jì)念品的數(shù)量
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com