【題目】近來天氣變化無常,陡然升溫、降溫幅度大于的天氣現象出現增多.陡然降溫幅度大于
容易引起幼兒傷風感冒疾病.為了解傷風感冒疾病是否與性別有關,在某婦幼保健院隨機對人院的
名幼兒進行調查,得到了如下的列聯表,若在全部
名幼兒中隨機抽取
人,抽到患傷風感冒疾病的幼兒的概率為
,
(1)請將下面的列聯表補充完整;
患傷風感冒疾病 | 不患傷風感冒疾病 | 合計 | |
男 | 25 | ||
女 | 20 | ||
合計 | 100 |
(2)能否在犯錯誤的概率不超過的情況下認為患傷風感冒疾病與性別有關?說明你的理由;
(3)已知在患傷風感冒疾病的名女性幼兒中,有
名又患黃痘病.現在從患傷風感冒疾病的
名女性中,選出
名進行其他方面的排查,記選出患黃痘病的女性人數為
,求
的分布列以及數學期望.下面的臨界值表供參考:
參考公式:,其中
【答案】(1)見解析,(2) 不能在犯錯誤的概率不超過的情況下認為患傷風感冒疾病與性別有美.(3)分布列見解析,
【解析】
(1)根據在全部名幼兒中隨機抽取
人,抽到患傷風感冒疾病的幼兒的概率為
,可以求出患傷風感冒疾病的幼兒的數量,這樣可以補充完成列聯表;
(2)代入公式求出的值,根據所給的表寫出結論;
(3) 根據題意,的值可能為
.分別求出相應的概率值,列出分布列,計算出數學期望即可.
(1)列聯表補充如下;
患傷風感冒疾病 | 不患傷風感冒疾病 | 合計 | |
男 | |||
女 | |||
合計 |
計
算的觀測值為
,
所以不能在犯錯誤的概率不超過的情況下認為患傷風感冒疾病與性別有美.
(3)根據題意,的值可能為
.
則,
,
故的分布列如下:
故的數學期望:
.
科目:高中數學 來源: 題型:
【題目】是定義在
上的奇函數,對
,均有
,已知當
時,
,則下列結論正確的是( )
A. 的圖象關于
對稱 B.
有最大值1
C. 在
上有5個零點 D. 當
時,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調查身體健康狀況,需要從中抽取一個容量為m的樣本,用分層抽樣的方法進行抽樣調查,樣本中的中年人為6人,則n和m的值不可以是下列四個選項中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年雙十一落下帷幕,天貓交易額定格在268(單位:十億元)人民幣(下同),再創新高,比去年218(十億元)多了50(十億元),這些數字的背后,除了是消費者買買買的表現,更是購物車里中國新消費的奇跡,為了研究歷年銷售額的變化趨勢,一機構統計了2010年到2019年天貓雙十一的銷售額數據(單位:十億元).繪制如下表1:
表1
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
銷售額 | 0.9 | 8.7 | 22.4 | 41 | 65 | 94 | 132.5 | 172.5 | 218 | 268 |
根據以上數據繪制散點圖,如圖所示.
(1)根據散點圖判斷,與
哪一個適宜作為銷售額
關于
的回歸方程類型?(給出判斷即可,不必說明理由)
(2)根據(1)的判斷結果及下表中的數據,建立關于
的回歸方程,并預測2020年天貓雙十一銷售額;(注:數據保留小數點后一位)
(3)把銷售額超過10(十億元)的年份叫“暢銷年”,把銷售額超過100(十億元)的年份叫“狂歡年”,從2010年到2019年這十年的“暢銷年”中任取3個,求取到的“狂歡年”個數的分布列與期望.
參考數據:.
參考公式:對于一組數據,
,…,
,其回歸直線
的斜率和截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在貫徹中共中央、國務院關于精準扶貧政策的過程中,某單位在某市定點幫扶某村戶貧困戶.為了做到精準幫扶,工作組對這
戶村民的年收入情況、危舊房情況、患病情況等進行調查,并把調查結果轉化為各戶的貧困指標
.將指標
按照
,
,
,
,
分成五組,得到如圖所示的頻率分布直方圖.規定若
,則認定該戶為“絕對貧困戶”,否則認定該戶為“相對貧困戶”;當
時,認定該戶為“亟待幫住戶”.工作組又對這
戶家庭的受教育水平進行評測,家庭受教育水平記為“良好”與“不好”兩種.
(1)完成下面的列聯表,并判斷是否有的把握認為絕對貧困戶數與受教育水平不好有關:
受教育水平良好 | 受教育水平不好 | 總計 | |
絕對貧困戶 | |||
相對貧困戶 | |||
總計 |
(2)上級部門為了調查這個村的特困戶分布情況,在貧困指標處于的貧困戶中,隨機選取兩戶,用
表示所選兩戶中“亟待幫助戶”的戶數,求
的分布列和數學期望
.
附:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】氣象意義上從春季進入夏季的標志為連續5天的日平均溫度均不低于22℃.現有甲、乙、丙三地連續5天的日平均溫度的記錄數據:(記錄數據都是正整數)
①甲地5個數據的中位數為24,眾數為22;
②乙地5個數據的中位數為27,總體均值為24;
③丙地5個數據中有一個數據是32,總體均值為26,總體方差為10.8.
則肯定進入夏季的地區有_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,的焦點為
,過點
的直線
的斜率為
,與拋物線
交于
,
兩點,拋物線在點
,
處的切線分別為
,
,兩條切線的交點為
.
(1)證明:;
(2)若的外接圓
與拋物線
有四個不同的交點,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數).以原點
為極點,以
軸為非負半軸為極軸建立極坐標系,兩坐標系相同的長度單位.圓
的方程為
被圓
截得的弦長為
.
(Ⅰ)求實數的值;
(Ⅱ)設圓與直線
交于點
,若點
的坐標為
,且
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com