分析 (1)根據題意,用作差法分析可得f(x)-g(x)的符號,即可得答案;
(2)根據題意,將不等式f(x)≤0變形為x2-(m+1)x+m≤0,即 (x-m)(x-1)≤0,討論m的取值,即可得不等式f(x)≤0的解集.
解答 解:(1)由于f(x)-g(x)=x2-(m+1)x+m+(m+4)x+4-m
=x2+3x+4=${(x+\frac{3}{2})^2}+\frac{7}{4}$>0,
∴f(x)>g(x).
(2)不等式f(x)≤0,即x2-(m+1)x+m≤0,即 (x-m)(x-1)≤0,
當m<1時,其解集為{x|m≤x≤1},
當m=1時,其解集為{x|x=1},
當m>1時,其解集為{x|1≤x≤m}.
點評 本題考查一元二次不等式的解法以及不等式大小的比較,(2)時注意要分類討論.
科目:高中數(shù)學 來源: 題型:選擇題
A. | m>0 | B. | m≤0 | C. | m>1 | D. | m≤1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2:3 | B. | 4:3 | C. | 3:1 | D. | 3:2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[17.5,20) | 10 | 0.05 |
[20,225) | 50 | 0.25 |
[22.5,25) | a | b |
[25,27.5) | 40 | c |
[27.5,30] | 20 | 0.10 |
合計 | N | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | -4 | C. | $-\frac{14}{3}$ | D. | -6 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com