【題目】已知f(x)=2sin4x+2cos4x+cos22x﹣3.
(1)求函數f(x)的最小正周期.
(2)求函數f(x)在閉區間[ ]上的最小值并求當f(x)取最小值時,x的取值集合.
【答案】
(1)解:f(x)=2(sin2x+cos2x)2﹣4sin2xcos2x+cos22x﹣3
=2×1﹣sin22x+cos22x﹣3
=cos22x﹣sin22x﹣1
=cos4x﹣1
函數的最小正周期T= =
(2)解:x∈[ ]
4x∈[ ]
∴f(x)=cos4x﹣1在[ ]是減函數
當x= 時
f(x)有最小值f( )=cos
﹣1=﹣
﹣1,此時x的集合是
【解析】通過同角三角函數的基本關系式,二倍角公式化簡函數為一個角的一個三角函數的形式,(1)利用周期公式求出函數的最小正周期.(2)通過x∈[ ],求出 4x∈[
],利用函數的單調性,求出函數的最小值,以及x的集合即可.
【考點精析】認真審題,首先需要了解二倍角的余弦公式(二倍角的余弦公式:).
科目:高中數學 來源: 題型:
【題目】已知圓x2+y2=4上一定點A(2,0),B(1,1)為圓內一點,P,Q為圓上的動點.
(1)求線段AP中點的軌跡方程;
(2)若∠PBQ=90°,求線段PQ中點的軌跡方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an} 的前n項和Sn=3n2+8n,{bn}是等差數列,且an=bn+bn+1
(1)求數列{bn}的通項公式;
(2)令cn= ,求數列{cn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數,當x≥0時f(x)=2x﹣x2 ,
(1)求f(x)的表達式;
(2)設0<a<b,當x∈[a,b]時,f(x)的值域為 ,求a,b的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com