設函數,
(I)若,求函數
的極小值,
(Ⅱ)若,設
,函數
.若存在
使得
成立,求
的取值范圍.
科目:高中數學 來源: 題型:解答題
已知函數f(x)=-x3+
x2-2x(a∈R).
(1)當a=3時,求函數f(x)的單調區間;
(2)若對于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實數a的取值范圍;
(3)若過點可作函數y=f(x)圖象的三條不同切線,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f (x) =
(1)試判斷當的大小關系;
(2)試判斷曲線和
是否存在公切線,若存在,求出公切線方程,若不存在,說明理由;
(3)試比較 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)與的大小,并寫出判斷過程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數
(I)當時,討論函數
的單調性:
(Ⅱ)若函數的圖像上存在不同兩點
,
,設線段
的中點為
,使得
在點
處的切線
與直線
平行或重合,則說函數
是“中值平衡函數”,切線
叫做函數
的“中值平衡切線”.
試判斷函數是否是“中值平衡函數”?若是,判斷函數
的“中值平衡切線”的條數;若不是,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com