日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】ABC中,a、b是方程x2-2x+2=0的兩根,且2cos(A+B)=-1.

(1)求角C的度數;

(2)求c;

(3)求△ABC的面積.

【答案】(1)60°;(2)c=;(3).

【解析】

(1)利用三角形的內角和及誘導公式,即可求得結論;

(2)利用韋達定理及余弦定理,可求c的值;

(3)利用三角形的面積公式,可求面積.

(1)∵2cos(A+B)=﹣1,A+B+C=180°,∴2cos(180°﹣C)=﹣1,

∴cos(180°﹣C)=﹣.∴cosC=,∵0°<C<180°,∴C=60°.

(2)∵a、b是方程x2﹣2+2=0的兩根,∴a+b=2,ab=2

由余弦定理可知cosC=,∴c=.

(3)S△ABCabsinC

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某工廠家具車間造、型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張型型桌子分別需要1小時和2小時,漆工油漆一張、型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張型型桌子分別獲利潤2千元和3千元.

(1)列出滿足生產條件的數學關系式,并畫出可行域;

(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數恰有兩個不同的零點,則實數的取值范圍為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是偶函數,且滿足,當時, ,當時, 的最大值為.

(1)求實數的值;

(2)函數,若對任意的,總存在,使不等式恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.

如圖,在陽馬中,側棱底面,且,過棱的中點,作于點,連接

)證明:.試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫

出結論);若不是,說明理由;

)若面與面所成二面角的大小為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為 ,且離心率為 為橢圓上任意一點,當時, 的面積為1.

(1)求橢圓的方程;

(2)已知點是橢圓上異于橢圓頂點的一點,延長直線, 分別與橢圓交于點, ,設直線的斜率為,直線的斜率為,求證: 為定值.

【答案】(1);(2)

【解析】試題分析:(1)設由題,由此求出,可得橢圓的方程;

(2)設,

當直線的斜率不存在時,可得;

當直線的斜率不存在時,同理可得.

當直線、的斜率存在時,,

設直線的方程為,則由消去通過運算可得

,同理可得,由此得到直線的斜率為,

直線的斜率為,進而可得.

試題解析:(1)設由題,

解得,則

橢圓的方程為.

(2)設, ,

當直線的斜率不存在時,設,則,

直線的方程為代入,可得,

, ,則,

直線的斜率為,直線的斜率為,

當直線的斜率不存在時,同理可得.

當直線的斜率存在時,,

設直線的方程為,則由消去可得:

,

,則,代入上述方程可得

,

,則

,

設直線的方程為,同理可得

直線的斜率為,

直線的斜率為,

.

所以,直線的斜率之積為定值,即.

型】解答
束】
21

【題目】已知函數 ,在處的切線方程為.

(1)求, ;

(2)若,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的參數方程為, 為參數),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,直線的極坐標方程為,若直線與曲線相切;

(1)求曲線的極坐標方程;

(2)在曲線上取兩點 與原點構成,且滿足,求面積的最大值.

【答案】(1);(2)

【解析】試題分析:(1)利用極坐標與直角坐標的互化公式可得直線的直角坐標方程為,

,消去參數可知曲線是圓心為,半徑為的圓,由直線與曲線相切,可得: ;則曲線C的方程為, 再次利用極坐標與直角坐標的互化公式可得

可得曲線C的極坐標方程.

(2)由(1)不妨設M(),,(),

,

由此可求面積的最大值.

試題解析:(1)由題意可知直線的直角坐標方程為,

曲線是圓心為,半徑為的圓,直線與曲線相切,可得: ;可知曲線C的方程為

所以曲線C的極坐標方程為,

.

(2)由(1)不妨設M(),,(),

,

時, ,

所以△MON面積的最大值為.

型】解答
束】
23

【題目】已知函數的定義域為

(1)求實數的取值范圍;

(2)設實數的最大值,若實數 , 滿足,求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對任意恒成立,其中是整數,則的取值的集合為____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.

(1)求圓的方程。

(2)在圓上,是否存在點,使得直線與圓相交于不同的兩點,且△的面積最大?若存在,求出點的坐標及對應的△的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美一级黄色网 | 欧美久久视频 | 国产欧美日韩 | 老司机福利在线观看 | 国产精品一区在线观看 | 日本精品视频在线播放 | 欧美在线视频网站 | 成人毛片在线视频 | 欧美片网站免费 | 亚洲男人的天堂网站 | 国产成人精品久久二区二区 | 国产福利91精品一区二区三区 | 国产一级特黄aaa大片 | 日韩有码一区二区三区 | 日日操操 | 久久亚洲一区二区三区四区 | 日韩在线高清视频 | 高清av一区 | 蜜桃久久久 | 亚洲成人黄色 | 黄色免费看片 | 亚洲激情在线 | 精品国产乱码久久久久久久 | av电影网在线观看 | 国产成人精品免高潮在线观看 | 毛片链接 | 亚洲黄色免费在线看 | av一区二区在线观看 | 欧美日韩激情在线一区二区三区 | 精品色区 | 国产亚洲欧美一区二区 | 国产精品美女高潮无套久久 | 国产精品色综合 | 亚洲精品一区 | 9久久精品 | 国产精品一区二区免费视频 | 国产精品久久久一区二区 | 凹凸日日摸日日碰夜夜爽孕妇 | 一区二区免费 | 黄色在线免费观看 | 国产日日操 |