【題目】已知函數.
(1)當時,求
在區間
上的最值;
(2)討論函數的單調性;
(3)當時,有
恒成立,求
的取值范圍.
【答案】(Ⅰ);
(Ⅱ)見解析;
(Ⅲ)(﹣1,0)
【解析】
(1)求出函數在區間上的極值和端點值,比較后可得最值;(2)根據
的不同取值進行分類討論,得到導函數的符號后可得函數的單調性;(3)當
時,求出函數
的最小值為
,故問題轉化為當
時
恒成立,整理得到關于
的不等式,解不等式可得所求范圍.
(1)當時,
,
∴.
∴當時,
單調遞減;當
時,
單調遞增.
∴當時,函數取得極小值,也為最小值,且最小值為
.
又,
,
∴.
所以函數在區間上的最小值為
,最大值為
.
(2)由題意得,
.
①當,即
時,
恒成立,
∴在
上單調遞減.
②當時,
恒成立,
∴在
上單調遞增.
③當時,
,
由得
,或
(舍去),
∴在
上單調遞減,在
上單調遞增.
綜上可得,當,
在
上單調遞增;
當時,
在
上單調遞減,在
單調遞增;
當時,
在
上單調遞減.
(3)由(2)可得,當時,
,
若不等式恒成立,則只需
,
即,
整理得,
解得,
∴,
又,
∴.
∴實數的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】一個口袋中有個白球和
個紅球(
,且
),每次從袋中摸出兩個球(每次摸球后把這兩個球放回袋中),若摸出的兩個球顏色相同為中獎,否則為不中獎.
(1)試用含的代數式表示一次摸球中獎的概率
;
(2)若,求三次摸球恰有一次中獎的概率;
(3)記三次摸球恰有一次中獎的概率為,當
為何值時,
取最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從1,3,5,7,9這五個數中,每次取出兩個不同的數分別記為a,b,共可得到lga﹣lgb的不同值的個數是( )
A.9
B.10
C.18
D.20
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某算法的程序框圖如圖所示,其中輸入的變量x在1,2,3,…,24這24個整數中等可能隨機產生
(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率pi(i=1,2,3);
(2)甲乙兩同學依據自己對程序框圖的理解,各自編程寫出程序重復運行n次后,統計記錄輸出y的值為i(i=1,2,3)的頻數,以下是甲乙所作頻數統計表的部分數據.
甲的頻數統計圖(部分)
運行次數n | 輸出y的值為1的頻數 | 輸出y的值為2的頻數 | 輸出y的值為3的頻數 |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
乙的頻數統計圖(部分)
運行次數n | 輸出y的值為1的頻數 | 輸出y的值為2的頻數 | 輸出y的值為3的頻數 |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
當n=2100時,根據表中的數據,分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數表示),并判斷兩位同學中哪一位所編程序符合要求的可能性較大;
(3)將按程序擺圖正確編寫的程序運行3次,求輸出y的值為2的次數ξ的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設常數a∈R,集合A={x|(x﹣1)(x﹣a)≥0},B={x|x≥a﹣1},若A∪B=R,則a的取值范圍為( )
A.(﹣∞,2)
B.(﹣∞,2]
C.(2,+∞)
D.[2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線的頂點在坐標原點,焦點F在軸正半軸上,過點F的直線交拋物線于A,B兩點,線段AB的長是8,AB的中點到
軸的距離是
.
(1)求拋物線的標準方程;
(2)在拋物線上是否存在不與原點重合的點P,使得過點P的直線交拋物線于另一點Q,滿足,且直線PQ與拋物線在點P處的切線垂直?并請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲廠以x千克/小時的速度勻速生產某種產品(生產條件要求1≤x≤10),每小時可獲得的利潤是100(5x+1﹣ )元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求此最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一(1)班的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.
(1)求分數在的頻數及全班人數;
(2)求分數在之間的頻數,并計算頻率分布直方圖中
間矩形的高.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com