【題目】已知定義域為R的函數f(x)=a+ (a,b∈R)有最大值和最小值,且最大值與最小值之和為6,則3a﹣2b=( )
A.7
B.8
C.9
D.10
【答案】C
【解析】解:∵函數y=f(x)=a+ =a+bx+
有最大值和最小值, ∴必有b=0,
則y=f(x)=a+ ,即y﹣a=
.
∴3sinx+(a﹣y)cosx=2y﹣2a,
得 (tanθ=
).
∴sin(x+θ)= ,
由|sin(x+φ)|=| |≤1,
可得(y﹣a)2≤3,故有a﹣ ≤y≤a+
.
再根據最大值與最小值之和為6,可得2a=6,即a=3,
∴3a﹣2b=9﹣0=9,
故選:C.
【考點精析】本題主要考查了函數的最值及其幾何意義的相關知識點,需要掌握利用二次函數的性質(配方法)求函數的最大(。┲;利用圖象求函數的最大(。┲;利用函數單調性的判斷函數的最大(。┲挡拍苷_解答此題.
科目:高中數學 來源: 題型:
【題目】中國古代數學著作《算法統宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳疼減一半,六朝才得到其關,要見次日行里數,請公仔細算相還.”其大意為:“有一個人走了378里路,第一天健步行走,從第二天起腳疼每天走的路程為前一天的一半,走了6天后到達目的地,請問第二天走了?”根據此規律,求后3天一共走多少里( )
A.156里
B.84里
C.66里
D.42里
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在5件產品中,有3件一等品和2件二等品,從中任取2件,以為概率的事件是( )
A. 恰有1件一等品 B. 至少有一件一等品
C. 至多有一件一等品 D. 都不是一等品
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】A.B兩種規格的產品都需娶在甲、乙兩臺機器上各加工一道工序才能成為成品,巳知A產品需要在甲機器上加工3小時,在乙機器上加工1小時;B產品需要在甲機器上加工1小時,在乙機器上加工3小時,在一個工作日內,甲機器至多只能使用11小時,乙機器至多只能使用9小時,A產品每件利潤300元,B成品每件利潤400元,則這兩臺機器在一個工作日內創造的最大利潤是___________元.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學習雷鋒精神前半年內某單位餐廳的固定餐椅經常有損壞,學習雷鋒精神時全修好;
單位對學習雷鋒精神前后各半年內餐椅的損壞情況作了一個大致統計,具體數據如下:
損壞餐椅數 | 未損壞餐椅數 | 總 計 | |
學習雷鋒精神前 | 50 | 150 | 200 |
學習雷鋒精神后 | 30 | 170 | 200 |
總 計 | 80 | 320 | 400 |
(1)求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數量與學習雷鋒精神是否有關?
(2)請說明是否有97.5%以上的把握認為損毀餐椅數量與學習雷鋒精神有關?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是定義在R上的偶函數,對于x∈R,都有f(x+4)=f(x)+f(2)成立,當x1 , x2∈[0,2]且x1≠x2時,都有 <0,給出下列四個命題:
①f(﹣2)=0;
②直線x=﹣4是函數y=f(x)的圖象的一條對稱軸;
③函數y=f(x)在[4,6]上為增函數;
④函數y=f(x)在(﹣8,6]上有四個零點.
其中所有正確命題的序號為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= .
(1)若函數f(x)在區間(a,a+ )(a>0)上存在極值點,求實數a的取值范圍;
(2)當x≥1時,不等式f(x)≥ 恒成立,求實數k的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com