A. | 4 | B. | $\frac{1}{4}$ | C. | -4 | D. | $-\frac{1}{4}$ |
分析 先求出f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,從而$f[f(\frac{1}{4})]$=f(-2),由此能求出結果.
解答 解:∵函數$f(x)=\left\{\begin{array}{l}{log_2}x,x>0\\{2^x},x≤0\end{array}\right.$,
∴f($\frac{1}{4}$)=$lo{g}_{2}\frac{1}{4}$=-2,
$f[f(\frac{1}{4})]$=f(-2)=2-2=$\frac{1}{4}$.
故選:B.
點評 本題考查函數值的求法,是基礎題,解題時要認真審題,注意函數性質的合理運用.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | {x|-1<x<4} | B. | {x|-1<x≤4} | C. | {x|4≤x<10} | D. | {x|-1≤x≤4} |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | x$\sqrt{ax}$ | B. | x$\sqrt{-ax}$ | C. | -x$\sqrt{-ax}$ | D. | -x$\sqrt{ax}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com