【題目】已知橢圓,
為左焦點,
為上頂點,
為右頂點,若
,拋物線
的頂點在坐標原點,焦點為
.
(1)求的標準方程;
(2)是否存在過點的直線,與
和
交點分別是
和
,使得
?如果存在,求出直線的方程;如果不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】設拋物線的焦點為
,過點
作直線
與拋物線交于
,
兩點,點
滿足
,過
作
軸的垂線與拋物線交于點
,若
,則點
的橫坐標為__________,
__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的兩個焦點與短軸的一個端點是等邊三角形的三個頂點,且長軸長為4
(1)求橢圓的方程;
(2)若是橢圓
的左頂點,經過左焦點
的直線
與橢圓
交于
、
兩點,求
與
的面積之差的絕對值的最大值,并求取得最大值時直線
的方程.
為坐標原點)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:(
)的短軸長為2,離心率為
(1)求橢圓C的方程
(2)若過點M(2,0)的引斜率為的直線與橢圓C相交于兩點GH,設P為橢圓C上一點,且滿足
(O為坐標原點),當
時,求實數
的取值范圍?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右焦點為
,右頂點為
.已知
,其中
為原點,
為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設過點的直線
與橢圓交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
.若
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設常數.在平面直角坐標系xOy中,已知點
,直線l:
,曲線Γ:
(
,
).l與x軸交于點A、與Γ交于點B.P、Q分別是曲線Γ與線段AB上的動點.
(1)用t表示點B到點F的距離;
(2)設,
,線段OQ的中點在直線FP上,求△AQP的面積;
(3)設,是否存在以FP、FQ為鄰邊的矩形FPEQ,使得點E在Γ上?若存在,求點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓經過點
離心率
.
(Ⅰ)求橢圓的方程;
(Ⅱ)經過橢圓左焦點的直線(不經過點
且不與
軸重合)與橢圓交于
兩點,與直線
:
交于點
,記直線
的斜率分別為
.則是否存在常數
,使得向量
共線?若存在求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,內角A,B,C所對的邊分別為a,b,c,已知cos2B+cosB=1-cosAcosC.
(1)求證:a,b,c成等比數列;
(2)若b=2,求△ABC的面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com