【題目】關(guān)于的方程
的實根個數(shù)記
.(1)若
,則
=____________;(2)若
,存在
使得
成立,則
的取值范圍是_____.
【答案】
【解析】
(1)根據(jù)一次函數(shù)的特點(diǎn)直接可得到此時的值;
(2)利用函數(shù)圖象先考慮是否滿足,再利用圖象分析
時
滿足要求時對應(yīng)的不等式,從而求解出
的取值范圍.
(1)若g(x)=x+1,則函數(shù)的值域為R,且函數(shù)為單調(diào)函數(shù),故方程g(x)=t有且只有一個根,故f(t)=1,
(2)
當(dāng)時,利用圖象分析可知:
如下圖,此時,
,不滿足題意;
如下圖,此時,
,不滿足題意;
當(dāng)時,利用圖象分析可知:
當(dāng)時,由上面圖象分析可知不符合題意,
當(dāng)時,若要滿足
,如下圖所示:
只需滿足:,
,所以
,解得
.
綜上可知:.
故答案為:;
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實數(shù)m的值;
(2)若ARB,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)若對任意的實數(shù),都有
成立,求實數(shù)
的取值范圍;
(Ⅲ)若,
的最大值是
,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在
軸上,短軸長和焦距都等于2,
是橢圓上的一點(diǎn),且
在第一象限內(nèi),過
且斜率等于
的直線與橢圓
交于另一點(diǎn)
,點(diǎn)
關(guān)于原點(diǎn)的對稱點(diǎn)為
.
(1)求橢圓的方程;
(2)證明:直線的斜率為定值;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓長軸是短軸的
倍,且右焦點(diǎn)為
.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)直線交橢圓
于
兩點(diǎn),若線段
中點(diǎn)的橫坐標(biāo)為
,求直線
的方程及
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題:指數(shù)函數(shù)
是減函數(shù);命題
:
,使關(guān)于
的方程
有實數(shù)解,其中
.
(1)當(dāng)時,若
為真命題,求
的取值范圍;
(2)當(dāng)時,若
且
為假命題,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
,且
為自然對數(shù)的底數(shù))
(1)判斷函數(shù)的單調(diào)性并證明;
(2)判斷函數(shù)的奇偶性并證明;
(3)是否存在實數(shù),使不等式
對一切
都成立?若存在,求出
的范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘時期,人們認(rèn)為最美人體的頭頂至肚臍的長度與肚臍至足底的長度之比是(
≈0.618,稱為黃金分割比例),著名的“斷臂維納斯”便是如此.此外,最美人體的頭頂至咽喉的長度與咽喉至肚臍的長度之比也是
.若某人滿足上述兩個黃金分割比例,且腿長為105cm,頭頂至脖子下端的長度為26 cm,則其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com