【題目】如圖,公園有一塊邊長為2的等邊三角形的邊角地,現(xiàn)修成草坪,圖中
把草坪分成面積相等的兩部分,
在
上,
在
上.
(Ⅰ)設(shè),
,求用
表示
的函數(shù)關(guān)系式;
(Ⅱ)如果是灌溉水管,為節(jié)約成本,希望它最短,
的位置應(yīng)在哪里?如果
是參觀線路,則希望它最長,
的位置又應(yīng)在哪里?請予以證明.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位實(shí)行職工值夜班制度,己知A,B,C,D,E5名職工每星期一到星期五都要值一次夜班,且沒有兩人同時值夜班,星期六和星期日不值夜班,若A昨天值夜班,從今天起B,C至少連續(xù)4天不值夜班,D星期四值夜班,則今天是星期__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,已知是以
為圓心,以4為半徑的圓上的動點(diǎn),
與
所連線段的垂直平分線與線段
交于點(diǎn)
。
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)已知點(diǎn)坐標(biāo)為(4,0),并且傾斜角為銳角的直線
經(jīng)過點(diǎn)
并且與曲線
相交于
兩點(diǎn),
(ⅰ)求證:;
(ⅱ)若,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三人進(jìn)行圍棋比賽,每局兩人參加,沒有平局。在一局比賽中,甲勝乙的概率為,甲勝丙的概率為
,乙勝丙的概率為
.比賽順序?yàn)椋菏紫扔杉缀鸵疫M(jìn)行第一局的比賽,再由獲勝者與未參加比賽的選手進(jìn)行第二局的比賽,依此類推,在比賽中,有選手獲勝滿兩局就取得比賽的勝利,比賽結(jié)束.
(1)求恰好進(jìn)行了三局比賽,比賽就結(jié)束的概率;
(2)記從比賽開始到比賽結(jié)束所需比賽的局?jǐn)?shù)為,求
的概率分布列和數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對定義在區(qū)間上的函數(shù)
和
,如果對任意
,都有
成立,那么稱函數(shù)
在區(qū)間D上可被
替代,D稱為“替代區(qū)間”.給出以下命題:
①在區(qū)間
上可被
替代;
②可被
替代的一個“替代區(qū)間”為
;
③在區(qū)間
可被
替代,則
;
④,則存在實(shí)數(shù)
,使得
在區(qū)間
上被
替代;
其中真命題的有
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:和直線
:
,點(diǎn)P是圓C上的一動點(diǎn),直線與x軸,y軸的交點(diǎn)分別為點(diǎn)A、B。
(1)求與圓C相切且平行直線的直線方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某技術(shù)公司新開發(fā)了兩種新產(chǎn)品,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
測試指標(biāo) | |||||
產(chǎn)品 | 8 | 12 | 40 | 32 | 8 |
產(chǎn)品 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計(jì)產(chǎn)品,產(chǎn)品
為正品的概率;
(2)生產(chǎn)一件產(chǎn)品,若是正品可盈利80元,次品則虧損10元;生產(chǎn)一件產(chǎn)品
,若是正品可盈利100元,次品則虧損20元,在(1)的前提下,記
為生產(chǎn)1件產(chǎn)品
和1件產(chǎn)品
所得的總利潤,求隨機(jī)變量
的分列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
。
(1)若在處
和
圖象的切線平行,求
的值;
(2)設(shè)函數(shù),討論函數(shù)
零點(diǎn)的個數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com