日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知△ABC中,(
AB
BC
):(
BC
CA
):(
CA
AB
)=1:2:3
,則△ABC的形狀為( 。
分析:利用向量數量積公式,結合余弦定理,可得a2:b2:c2=3:5:4,從而可得△ABC的形狀.
解答:解:設A,B,C所對的邊分別為a,b,c,則
(
AB
BC
):(
BC
CA
):(
CA
AB
)=1:2:3
,
∴accos(π-B):abcos(π-C):bccos(π-A)=1:2:3
由余弦定理可得
a2+c2-b2
2
a2+b2-c2
2
b2+c2-a2
2
=1:2:3
解得a2:b2:c2=3:5:4
∴cosB=
a2+c2-b2
2ac
>0,
∴△ABC的形狀為非等腰銳角三角形
故選D.
點評:本題考查向量數量積公式,考查余弦定理的運用,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知△ABC中,A=60°,a=
15
,c=4,那么sinC=
2
5
5
2
5
5

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,A(4,2),B(1,8),C(-1,8).
(1)求AB邊上的高所在的直線方程;
(2)直線l∥AB,與AC,BC依次交于E,F,S△CEF:S△ABC=1:4.求l所在的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,a=2,b=1,C=60°,則邊長c=
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,a=2
3
,若
m
=(-cos
A
2
,sin
A
2
)
,
n
=(cos
A
2
,sin
A
2
)
滿足
m
n
=
1
2
.(1)若△ABC的面積S=
3
,求b+c的值.(2)求b+c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,A,B,C的對邊分別為a,b,c,且
(AB)2
=
AB
AC
+
BA
BC
+
CA
CB

(Ⅰ)判斷△ABC的形狀,并求t=sinA+sinB的取值范圍;
(Ⅱ)若不等式a2(b+c)+b2(c+a)+c2(a+b)≥kabc,對任意的滿足題意的a,b,c都成立,求k的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 成人福利影院 | 国产福利91精品 | 久久第一区 | 成人1区2区 | 九九综合九九 | www.四虎.com | 国产精品久久一区 | 激情一区二区三区 | 中文字幕亚洲欧美日韩在线不卡 | 一本大道综合伊人精品热热 | 91欧美激情一区二区三区成人 | 国产一区二区三区免费 | 精品久久久久久 | 中文字幕日韩在线 | 欧洲精品久久久 | 免费观看一级毛片 | av影院在线 | 欧美日韩中| 九九精品视频在线观看 | 国产精品久久久久久久久久免费看 | 91在线资源 | 青青久久 | 日本不卡免费新一二三区 | 日韩av高清在线 | 欧美精品在线一区二区三区 | av激情在线 | 日韩在线精品强乱中文字幕 | 青青草av| 亚洲精品久久久 | 99久久久国产精品 | 精品国产乱码久久久久久蜜柚 | 午夜视频在线免费观看 | 国产精品福利在线 | 天天天插 | 看毛片网站 | 免费不卡视频 | 国产一区亚洲 | 日本少妇xxxx软件 | 美女隐私视频黄www曰本 | 日本精品视频网站 | 午夜视频一区 |