日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
“對任意的正整數n,不等式nlga<(n+1)lgaa(a>0)都成立”的一個充分不必要條件是(  )
A.0<a<1B.0<a<
1
2
C.0<a<2D.0<a<
1
2
或a>1
原不等式等價于a(n+1)lga-nlga>0,
當a>1時lga>0,a(n+1)>n,a(n+1)lga-nlga>0成立,
當0<a<1時lga<0,要使a(n+1)lga-nlga>0成立,
只需a(n+1)-n<0成立,即a<n/(n+1),
n
n+1
=1-
1
n+1
,知
n
n+1
最小值為
1
2

所以0<a<
1
2

所以0<a<
1
2
或a>1是原不等式成立的充要條件
0<a<
1
2
是原不等式成立的充分不必要條件.
故選B.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在數列{an}中,a1=1,an+1=2an+2n
(1)設bn=
an
2n-1
(n∈N*),證明:數列{bn}是等差數列;
(2)設數列{an}的前n項和為Sn,求
lim
n→∞
Sn
n•2n+1
的值;
(3)設cn=2bn-1,數列{cn}的前n項和為Tndn=
Tn
4
a
2
n
-Tn
,是否存在實數t,使得對任意的正整數n和實數m∈[1,2],都有d1+d2+d3+…+dn≥log8(2m+t)成立?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=(2-a)lnx+
1
x
+2ax.
(Ⅰ)當a=0時,求f(x)的極值;
(Ⅱ)當a≠0時,求f(x)的單調區間;
(Ⅲ)當a=2時,對任意的正整數n,在區間[
1
2
,6+n+
1
n
]上總有m+4個數使得f(a1)+f(a2)+f(a3)+…+f(am)<f(am+1)+f(am+2)+f(am+3)+f(am+4)成立,試問:正整數m是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

設C1,C2,…,Cn,…是坐標平面上的一列圓,它們的圓心都在x軸的正半軸上,且都與直線y=
3
3
x
相切,對每一個正整數n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,以(λn,0)表示Cn的圓心,已知{rn}為遞增數列.
(1)證明{rn}為等比數列(提示:
rn
λn
=sinθ
,其中θ為直線y=
3
3
x
的傾斜角);
(2)設r1=1,求數列{
n
rn
}
的前n項和Sn
(3)在(2)的條件下,若對任意的正整數n恒有不等式Sn
9
4
-
an
rn
成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•河西區二模)已知等差數列{an}滿足a3+a4=9,a2+a6=10;又數列{bn}滿足nb1+(n-1)b2+…+2bn-1+bn=Sn,其中Sn是首項為1,公比為
89
的等比數列的前n項和.
(1)求an的表達式;
(2)若cn=-anbn,試問數列{cn}中是否存在整數k,使得對任意的正整數n都有cn≤ck成立?并證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}對任意的正整數n都有an-2an+1=0,a1=2,數列{bn}滿足對任意正整數n,bn是an和an+1的等差中項,則數列{bn}的前10項和為
3069
1024
3069
1024

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲人成中文字幕在线观看 | 亚州中文字幕 | 精品久久久久久国产 | 欧美日韩国产高清 | 97久久精品人人做人人爽50路 | 91九色视频在线 | 久久人人爽爽人人爽人人片av | 亚洲wuma| 在线免费国产视频 | 久久久亚洲精品视频 | 三级免费黄 | 99久久99| 2019天天操 | 欧美成人久久久免费播放 | 久久久久久久成人 | 成人免费一区 | 成人在线看片 | 国产精品一区二区三区四区在线观看 | 9uu在线观看 | 四虎中文字幕 | 欧美成人免费观看 | 最近免费中文字幕在线视频2 | 亚洲二区在线观看 | 一区二区在线看 | 成年人网站国产 | 美女视频黄色 | 亚洲国产精品人人爽夜夜爽 | 波多野结衣一区三区 | 成 人 a v天堂 | 欧洲av在线 | 2024av| 一区二区三区高清不卡 | 在线国产一区二区 | 日韩黄色片 | 国产拍拍视频 | 日韩天堂| 欧美日韩亚洲国产综合 | 欧美电影一区 | 午夜精品一区二区三区在线 | 天天草av | 久久精品久 |