日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設C1,C2,…,Cn,…是坐標平面上的一列圓,它們的圓心都在x軸的正半軸上,且都與直線y=
3
3
x
相切,對每一個正整數n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,以(λn,0)表示Cn的圓心,已知{rn}為遞增數列.
(1)證明{rn}為等比數列(提示:
rn
λn
=sinθ
,其中θ為直線y=
3
3
x
的傾斜角);
(2)設r1=1,求數列{
n
rn
}
的前n項和Sn
(3)在(2)的條件下,若對任意的正整數n恒有不等式Sn
9
4
-
an
rn
成立,求實數a的取值范圍.
分析:(1)依題意可知tanθ=
3
3
,由同角三角函數的基本關系可得sinθ,從而得
rn
λn
,得rn與λn的關系式①,再根據圓Cn都與圓Cn+1相互外切,得λn+1n=rn+rn+1②,由①②可得rn+1與rn的關系式,根據等比數列的定義可作出判斷;
(2)由(1)易求rn,從而可得
n
rn
,利用錯位相減法可求得Sn;
(3)由(2)可表示出不等式Sn
9
4
-
an
rn
,分離出參數a后,轉化為求函數的最值即可,利用函數的單調性易求函數的最值;
解答:解:(1)證明:依題意可知tanθ=
3
3
,則sinθ=
1
2

所以
rn
λn
=
1
2
,得λn=2rn,∴λn+1=2rn+1,
又圓Cn都與圓Cn+1相互外切,
所以λn+1n=rn+rn+1,即2rn+1-2rn=rn+rn+1,從而可得rn+1=3rn,
故數列{rn}為等比數列,公比為3.
(2)由于r1=1,q=3,故rn=3n-1,從而
n
rn
=
n
3n-1

Sn=
1
r1
+
2
r2
+…+
n-1
rn-1
+
n
rn
=1+2•3-1+3•3-2+…+(n-1)•32-n+n•31-n①,
1
3
Sn=1•3-1+2•3-2+…+(n-1)•31-n+n•3-n
②,
由①-②,得
2
3
Sn=1+3-1+3-2+…+•31-n-n•3-n
=
1-3-n
1-
1
3
-n•3-n
=
3
2
-(n+
3
2
)•3-n
,
Sn=
9
4
-
(2n+3)•31-n
4

(3)由(2)可知Sn
9
4
-
an
rn
可化為
9
4
-
(2n+3)•31-n
4
9
4
-
an
3n-1
,即a>
2n+3
4n
=
1
2
+
3
4n
,
要使對任意的正整數n恒有不等式a>
2n+3
4n
=
1
2
+
3
4n
成立,只需a>[
1
2
+
3
4n
]max
,
f(x)=
1
2
+
3
4x
,則函數f(x)在(0,+∞)為單調遞減函數.
又n∈N*,∴當n=1時,[
1
2
+
3
4n
]max
=
5
4
,
a>
5
4
點評:本題考查數列與不等式的綜合、數列與解析幾何的綜合,考查等比數列的定義及通項公式,考查轉化思想,對恒成立問題往往轉化為函數最值解決.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點分別為F1,F2,右頂點為A,P是橢圓C1上任意一點,設該雙曲線C2:以橢圓C1的焦點為頂點,頂點為焦點,B是雙曲線C2在第一象限內的任意一點,且c=
a2-b2

(1)設
PF1
PF2
的最大值為2c2,求橢圓離心率;
(2)若橢圓離心率e=
1
2
時,是否存在λ,總有∠BAF1=λ∠BF1A成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網A.選修4-1:幾何證明選講
銳角三角形ABC內接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
AB
于點E,連接EC,求∠OEC.
B.選修4-2:矩陣與變換
曲線C1=x2+2y2=1在矩陣M=[
12
01
]的作用下變換為曲線C2,求C2的方程.
C.選修4-4:坐標系與參數方程
P為曲線C1
x=1+cosθ
y=sinθ
(θ為參數)上一點,求它到直線C2
x=1+2t
y=2
(t為參數)距離的最小值.
D.選修4-5:不等式選講
設n∈N*,求證:
C
1
n
+
C
2
N
+L+
C
N
N
n(2n-1)

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,橢圓C0
x2
a2
+
y2
b2
=1(a>b>0
,a,b為常數),動圓C1x2+y2=
t
2
1
,b<t1<a.點A1,A2分別為C0的左,右頂點,C1與C0相交于A,B,C,D四點.
(Ⅰ)求直線AA1與直線A2B交點M的軌跡方程;
(Ⅱ)設動圓C2x2+y2=
t
2
2
與C0相交A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:
t
2
1
+
t
2
2
為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將選題號填入括號中.
(1)選修4一2:矩陣與變換
設矩陣M所對應的變換是把坐標平面上的點的橫坐標伸長到2倍,縱坐標伸長到3倍的伸縮變換.
(Ⅰ)求矩陣M的特征值及相應的特征向量;
(Ⅱ)求逆矩陣M-1以及橢圓
x2
4
+
y2
9
=1
在M-1的作用下的新曲線的方程.
(2)選修4一4:坐標系與參數方程
已知直線C1
x=1+tcosα
y=tsinα
(t為參數),C2
x=cosθ
y=sinθ
(θ為參數).
(Ⅰ)當α=
π
3
時,求C1與C2的交點坐標;
(Ⅱ)過坐標原點O做C1的垂線,垂足為A,P為OA中點,當α變化時,求P點的軌跡的參數方程.
(3)選修4一5:不等式選講
已知a,b,c均為正實數,且a+b+c=1.求
4a+1
+
4b+1
+
4c+1
的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義:設P、Q分別為曲線C1和C2上的點,把P、Q兩點距離的最小值稱為曲線C1到C2的距離.
(1)求曲線C:y=x2到直線l:2x-y-4=0的距離;
(2)若曲線C:(x-a)2+y2=1到直線l:y=x-1的距離為3,求實數a的值;
(3)求圓O:x2+y2=1到曲線y=
2x-3x-2
(x>2)
的距離.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日韩在线免费观看 | 在线成人免费观看www | 国产福利在线观看视频 | 中文字幕免费在线观看 | 精品18 | 日本久草 | 日韩欧美一区二区视频 | 欧美成人a交片免费看 | 99成人 | 国产精品视频久久 | 日本三级视频在线播放 | 99日韩| 一区二区三区免费av | 色综合欧美| 久久精品国产久精国产 | 久久久国产视频 | 欧美性猛交一区二区三区精品 | 91精品资源 | 欧洲一级毛片 | 亚洲日本欧美日韩高观看 | 中文字幕第一页在线 | 黄频免费在线观看 | 亚洲男人的天堂网站 | 日韩毛片免费在线观看 | 欧美激情 | 久久精品二区 | 综合精品久久久 | 国产精品国产成人国产三级 | 自拍第一页 | 国产精品欧美一区二区三区 | 欧美高清一级片 | 国产精品视频一区二区三区, | 亚洲人黄色片 | 天天草狠狠干 | 伦理午夜电影免费观看 | www.久久| 日韩中文字幕一区二区 | 国产精品美女久久久久久久久久久 | 免费日韩成人 | 精品一区视频 | 99国内精品久久久久久久 |