分析 (1)根據三角函數的圖象和性質將內層函數看作整體,放到正弦函數的增區間上,解不等式得函數的單調遞增區間;
(2)當x∈[0,$\frac{π}{2}$]時,求出內層函數的取值范圍,結合三角函數的圖象和性質,對a的正負進行討論,求出f(x)的取值最大和最小值,即可求a、b的值.
解答 解:(1)函數f(x)=$\sqrt{2}$asin(2x+$\frac{π}{4}$)+a+b,(a≠0).
∵a>0,
由$2kπ-\frac{π}{2}$≤2x+$\frac{π}{4}$$≤2kπ+\frac{π}{2}$可得kπ$-\frac{3π}{8}$≤x≤kπ$+\frac{π}{8}$,(k∈Z)
∴f(x)的單凋遞增區間為[kπ$-\frac{3π}{8}$,kπ$+\frac{π}{8}$],(k∈Z)
(2)∵x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
①若a>0時,
當2x+$\frac{π}{4}$=$\frac{π}{2}$時,函數f(x)取得最大值為$\sqrt{2}a+a+b$,
當2x+$\frac{π}{4}$=$\frac{5π}{4}$時,函數f(x)取得最小值為b,
由題意可得:b=3,$\sqrt{2}a+a+b$=4,解得a=$\sqrt{2}-1$.
∴a、b的值分別為:$\sqrt{2}-1$,3.
②若a<0時,
當2x+$\frac{π}{4}$=$\frac{π}{2}$時,函數f(x)取得最小值為$\sqrt{2}a+a+b$,
當2x+$\frac{π}{4}$=$\frac{5π}{4}$時,函數f(x)取得最大值為b,
由題意可得:b=4,$\sqrt{2}a+a+b$=3,解得a=.$1-\sqrt{2}$
∴a、b的值分別為:1$-\sqrt{2}$,4.
點評 本題主要考查對三角函數的化簡能力和三角函數的圖象和性質的運用,利用三角函數公式將函數進行化簡是解決本題的關鍵.屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | $\frac{{{2^n}+1}}{{{2^{n-1}}}}$ | B. | $\frac{{{2^n}-1}}{{{2^{n-1}}}}$ | C. | $\frac{{{2^n}+1}}{{{2^{n+1}}}}$ | D. | $\frac{{{2^n}-1}}{{{2^{n+1}}}}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 向右平移$\frac{π}{3}$個單位 | B. | 向左平移$\frac{π}{4}$個單位 | ||
C. | 向左平移$\frac{π}{3}$個單位 | D. | 向右平移$\frac{π}{4}$個單位 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{3\sqrt{3}}{2}$ | B. | $\frac{5\sqrt{3}}{6}$ | C. | $\frac{1}{2}$+$\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{2}$+$\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com