(本小題滿分13分)
已知橢圓的焦點分別為
,且過點
.
(1)求橢圓的標準方程;
(2)設為橢圓
內一點,直線
交橢圓
于
兩點,且
為線段
的中點,求直線
的方程.
科目:高中數學 來源: 題型:解答題
直線與橢圓
交于
,
兩點,已知
,
,若
且橢圓的離心率
,又橢圓經過點
,
為坐標原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點
(
為半焦距),求直線
的斜率
的值;
(Ⅲ)試問:的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,曲線C1是以原點O為中心,F1、F2為焦點的橢圓的一部分,曲線C2是以原點O為頂點,F2為焦點的拋物線的一部分,是曲線C1和C2的交點.
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點,H為BE中點,問是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在圓上任取一點
,過點
作
軸的垂線段
,
為垂足.當點
在圓上運動時,線段
的中點
形成軌跡
.
(1)求軌跡的方程;
(2)若直線與曲線
交于
兩點,
為曲線
上一動點,求
面積的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)已知橢圓
,
的離心率為
,直線
與以
原點為圓心,以橢圓
的短半軸長為半徑的圓相切。
、求橢圓
的方程;
、過點
的直線
(斜率存在時)與橢圓
交于
、
兩點,設
為橢圓
與
軸負半軸的交點,且
,求實數
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知離心率為的橢圓
上的點到
左焦點的最長距離為
(1)求橢圓的方程;
(2)如圖,過橢圓的左焦點任作一條與兩坐標軸都不垂直的弦
,若點
在
軸上,且使得
為
的一條內角平分線,則稱點
為該橢圓的“左特征點”,求橢圓的“左特征點”
的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com