日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

在三棱錐O-ABC中,三條棱OA,OB,OC兩兩互相垂直,且OA=OB=OC,M是AB邊的中點,則OM與平面ABC所成角的正切值是(  )
分析:利用線面、面面垂直的判定和性質(zhì)定理、等腰三角形的性質(zhì)、線面角的定義即可得出.
解答:解:如圖所示:
∵三條棱OA,OB,OC兩兩互相垂直,且OA=OB=OC,∴AC=BC,OC⊥平面OAB.
又M是AB邊的中點,∴OM⊥AB,CM⊥AB.
又OM∩CM=M,AB⊥平面OCM,
∵AB?平面ABC,∴平面OCM⊥平面ABC.
可知:OM在兩個平面的交線CM上.
∴∠OMC即為OM與平面ABC所成角.
不妨設(shè)OM=1,則OA=OC=
2

在Rt△OCM中,tan∠OMC=
OC
OM
=
2

故選B.
點評:熟練掌握線面、面面垂直的判定和性質(zhì)定理、等腰三角形的性質(zhì)、線面角的定義是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角三角形ABC中,AD是斜邊BC上的高,有很多大家熟悉的性質(zhì),例如“AB⊥AC”,勾股定理“|AB|2+|AC|2=|BC|2”和“
1
|AD|2
=
1
|AB|2
+
1
|AC|2
”等,由此聯(lián)想,在三棱錐O-ABC中,若三條側(cè)棱OA,OB,OC兩兩互相垂直,可以推出哪些結(jié)論?至少寫出兩個結(jié)論.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△OAB中,∠O=90°,則 cos2A+cos2B=1.根據(jù)類比推理的方法,在三棱錐O-ABC中,OA⊥OB,OB⊥OC,OC⊥OA,α、β、γ 分別是三個側(cè)面與底面所成的二面角,則
cos2α+cos2β+cos2γ=1
cos2α+cos2β+cos2γ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐O-ABC中,OA、OB、OC兩兩垂直,OC=1,OA=x,OB=y,x+y=4,當三棱錐O-ABC的體積最大時,異面直線AB與OC的距離等于
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐O-ABC中,M,N分別是OA,BC的中點,點G是MN的中點,則
OG
可用基底{
OA
OB,
OC
}
表示成:
OG
=
1
4
(
OA
+
OB
+
OC
)
1
4
(
OA
+
OB
+
OC
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)給出下列命題,其中正確的命題是
①③④
①③④
(寫出所有正確命題的編號).
①非零向量
a
b
滿足|
a
|=|
b
|=|
a
-
b
|
,則
a
a
+
b
的夾角為30°;
②已知非零向量
a
b
,則“
a
b
>0
”是“
a
b
的夾角為銳角”的充要條件;
③命題“在三棱錐O-ABC中,已知
OP
=x
OA
+y
OB
-2
OC
,若點P在△ABC所在的平面內(nèi),則x+y=3”的否命題為真命題;
④若(
AB
+
AC
)•(
AB
-
AC
)=0
,則△ABC為等腰三角形.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 综合色婷婷一区二区亚洲欧美国产 | 国产伦精品一区二区三区高清 | 激情国产 | 国产精品一区二区三区99 | 视频一区二区国产 | 羞羞在线视频 | 久久久久久久久久久久免费 | 精品国产三级 | 不卡一二| 久久久久性视频 | 日韩在线视频免费看 | 欧美成人免费视频 | 一区二区免费在线观看 | 男女羞羞视频免费观看 | 欧美.www| 欧美成人一区二区 | 看羞羞视频免费 | 久久亚洲精品裙底抄底 | 四虎影院免费看 | 国产精品久久久久久久久久 | 蜜臀影院 | 日韩一区二区三区在线 | 欧美一区二区三区精品免费 | 黄网站色大毛片 | 欧美日本在线播放 | 欧美日韩1区2区3区 www.日韩精品 | 久久精品性 | 综合激情视频 | 嫩草视频在线播放 | 欧美一级在线观看 | 精品欧美一区二区三区精品久久 | 欧美在线视频一区二区 | 精品视频一区二区三区 | 欧美国产日本一区 | 亚洲一区二区三区精品视频 | 伊人免费在线观看高清版 | 一区二区在线免费观看 | 色呦呦网 | 一区二区三区高清 | 色婷婷综合久久久久中文 | 久久久成人精品 |