日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
15.在邊長為3的正三角形ABC中,E,F,P分別是AB,AC,BC邊上的點,滿足$\frac{AE}{EB}$=$\frac{CF}{FA}$=$\frac{CP}{PB}$=$\frac{1}{2}$,將△AEF沿EF折起到△A1EF的位置,使二面角A1-EF-B成直二面角,連結A1B,A1P(如圖),則以下結論錯誤的是(  )
A.CF∥平面A1EP
B.A1E⊥平面BEP
C.點B到面A1PF的距離為$\sqrt{3}$
D.異面直線BP與A1F所成角的余弦值為$\frac{3}{4}$

分析 A,由$\frac{AE}{EB}$=$\frac{CF}{FA}$=$\frac{CP}{PB}$=$\frac{1}{2}$,⇒CF∥EP,⇒CF∥平面A1EP
B,利用面面垂直的性質定理判斷;
C,點B到面A1PF的距離進行轉化,B到面面A1PF的距離即為E到面面A1PF的距離,E到面A1PF的距離即為△A1EF中E到A1F的距離;
D,DF∥BP∴∠DFA1即為所求角

解答 解:對于A,由$\frac{AE}{EB}$=$\frac{CF}{FA}$=$\frac{CP}{PB}$=$\frac{1}{2}$,⇒CF∥EP,⇒CF∥平面A1EP,故正確;
對于B,在圖1中,取BE的中點D,連DF,滿足$\frac{AE}{EB}$=$\frac{CF}{FA}$=$\frac{CP}{PB}$=$\frac{1}{2}$,∵AF=AD=2,又∠A=60°∴△ADF為正三角形
又∵AE=ED=1∴EF⊥AD∴在圖2中有A1E⊥EF,BE=EF
∴∠A1EB為二面角A1-EF-B的平面角∵二面角A1-EF-B為直二面角∴A1E⊥BE
又∵BE∩EF=E,∴A1E⊥面BEF,即A1E⊥面BEP,故正確;
對于C.∵BE∥PF∴BE∥面A1PF,∵B到面面A1PF的距離即為E到面面A1PF的距離,
∵BE⊥面A1EF,又BE∥PF,∴PF⊥面A1EF
∴面A1EF⊥面A1PF∵E到面A1PF的距離即為△A1EF中E到A1F的距離
d=A1E×sin60°=$\frac{\sqrt{3}}{2}$,故錯;
對于D,∵DF∥BP∴∠DFA1即為所求角
△A1DF中A1D=,DF=2,A1F=2,由余弦定理得cos∠DFA1=$\frac{3}{4}$,故正確;
故選:C.

點評 本題考查直線與平面平行、垂直的證明,考查點面距,考查異面直線所成角的余弦值的求法,解題時要認真審題,注意問題的轉化.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

5.將函數$f(x)=sin(2x-\frac{π}{3})$的圖象向左平移$\frac{π}{3}$個單位,再將橫坐標伸長到原來的2倍后,所得函數為g(x),則g(π)=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

6.若函數f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<π)滿足下列條件:
(1)f(x)的圖象向左平移π個單位時第一次和原圖象重合;
(2)對任意的x∈R都有$f(x)≤f(\frac{π}{6})=2$成立.
則:(Ⅰ)求f(x)的解析式;
(Ⅱ)若銳角△ABC的內角B滿足f(B)=1,且∠B的對邊b=1,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.邊長為1,$\sqrt{5}$,$2\sqrt{2}$的三角形,它的最大角與最小角的和是(  )
A.60°B.120°C.135°D.150°

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.若半徑為2的球O內切于一個正三棱柱ABC-A1B1C1中,則該三棱柱的體積為48$\sqrt{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>b>0})$的一條漸近線平行于直線l:y=-2x-10,雙曲線的一個焦點在直線l上,雙曲線的方程為(  )
A.$\frac{x^2}{20}-\frac{y^2}{5}=1$B.$\frac{x^2}{20}-\frac{y^2}{100}=1$C.$\frac{x^2}{5}-\frac{y^2}{20}=1$D.$\frac{x^2}{25}-\frac{y^2}{100}=1$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

7.已知數列{an}中,a1=2,a2=3,其前n項和Sn滿足an+1+Sn-1=Sn+1(n≥2,n∈N*).
(1)求證:數列{an}為等差數列,并求{an}的通項公式;
(2)設Tn為數列$\{\frac{1}{{{a_n}{a_{n+1}}}}\}$的前n項和,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.已知點H(-1,0),動點P是y軸上除原點外的一點,動點M滿足PH⊥PM,且PM與x軸交于點Q,Q是PM的中點.
(1)求動點M的軌跡E的方程;
(2)若點F是曲線E的焦點,過F的兩條直線l1,l2關于x軸對稱,且分別交曲線E于AC,BD,若四邊形ABCD的面積等于$\frac{1}{2}$.求直線l1,l2的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

15.執行如圖所示的程序框圖,則輸出的S的值為(  )
A.-2015B.2016C.2014D.-2017

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 怡红院亚洲 | 欧美三级大片 | 日本黄色视| 国产一区二区在线播放 | www免费视频 | 美日韩在线 | 免费观看一区二区 | 日韩免费视频 | 一区二区三区免费 | 日韩免费看片 | 综合网av| 国产亚洲一区二区三区 | 国产成人高清 | 黄色片观看 | 欧美久久网 | 中文字幕在线免费播放 | 国产一区二区在线播放 | 天天澡天天狠天天天做 | 不卡av网站| 久久久久性 | 欧美精品在线视频 | 中文字幕免费 | 成人免费视频网址 | 成人免费黄色大片 | av自拍偷拍 | 国产一区精品在线 | 国产精品一区二区在线免费观看 | 成人一区二区视频 | 东北少妇bbbb搡bbb搡 | 亚洲涩涩涩 | 国产资源在线观看 | 亚洲一区二区av | 国产亚洲欧美日韩高清 | 亚洲一区二区免费 | 999精品视频 | 天天夜夜操 | 丁香午夜| 欧美综合一区二区三区 | 日韩精品国产精品 | 久久亚洲免费视频 | 日韩精品大片 |