已知函數f(x)=(a+1)lnx+ax2+1
(1)討論函數f(x)的單調性;
(2)設a<-1.如果對任意x1,x2∈(0,+∞),|f(x1)-f(x2)|≥4|x1-x2|,求a的取值范圍.
分析:(1)先確定函數的定義域然后求導數fˊ(x),在函數的定義域內解不等式fˊ(x)>0和fˊ(x)<0,求出單調區間.
(2)根據第一問的單調性先對|f(x1)-f(x2)|≥4|x1-x2|進行化簡整理,轉化成研究g(x)=f(x)+4x在(0,+∞)單調減函數,再利用參數分離法求出a的范圍.
解答:解:(Ⅰ)f(x)的定義域為(0,+∞).
f′(x)=+2ax=.
當a≥0時,f′(x)>0,故f(x)在(0,+∞)單調增加;
當a≤-1時,f′(x)<0,故f(x)在(0,+∞)單調減少;
當-1<a<0時,令f′(x)=0,解得
x=.
則當
x∈(0,)時,f'(x)>0;
x∈(,+∞)時,f'(x)<0.
故f(x)在
(0,)單調增加,在
(,+∞)單調減少.
(Ⅱ)不妨假設x
1≥x
2,而a<-1,由(Ⅰ)知在(0,+∞)單調減少,
從而?x
1,x
2∈(0,+∞),|f(x
1)-f(x
2)|≥4|x
1-x
2|
等價于?x
1,x
2∈(0,+∞),f(x
2)+4x
2≥f(x
1)+4x
1①
令g(x)=f(x)+4x,則
g′(x)=+2ax+4①等價于g(x)在(0,+∞)單調減少,即
+2ax+4≤0.
從而
a≤==-2故a的取值范圍為(-∞,-2].(12分)
點評:本小題主要考查函數的導數,單調性,極值,不等式等基礎知識,考查綜合利用數學知識分析問題、解決問題的能力.