【題目】如圖,在四面體中,
,
.
(1)證明:;
(2)若,
,四面體
的體積為2,證明:平面
平面
.
【答案】(1)見解析;(2)見解析
【解析】分析:方法1:(1)作Rt△斜邊
上的高
,連
,可得Rt△
≌ Rt△
,于是
,由此可得
平面
,于是
.(2)由題意得
,
然后根據平面
,四面體
的體積
可得
,于是得到
,故
,所以得
平面
,由面面垂直的判定定理可得結論.
方法2:(1)由三角形全等可得.取
的中點
,連
,
,則有
平面
,從而可得
.(2)由題意得△
面積為
,根據
可得點
到平面
距離
.然后在平面
內過
作
于
,求得
.
故得平面
,可證得平面
平面
.
詳解:(1)解法1:如圖,作Rt△斜邊
上的高
,連
.
∵,
,
∴Rt△≌ Rt△
.
于是可得.
又,
∴平面
,
∵平面
,
∴.
(2)在Rt△中,
,
,
∴,
,
,
△的面積
.
又平面
,四面體
的體積
,
∴,
∴,
,
∴.
∵,
,
∴平面
.
∵平面
,
∴平面平面
.
解法2:
(1)∵,
,
∴Rt△≌Rt△
.
∴.
取的中點
,連
,
,則
,
,
又
∴平面
,
∵平面
,
∴.
(2)在Rt△中,
,
,
∴△面積為
.
設到平面
距離為
,
則,
∴.
在平面內過
作
,垂足為
,
∵,
,
∴.
由點到平面距離定義知平面
,
∵平面
,
∴平面平面
.
科目:高中數學 來源: 題型:
【題目】有甲、乙兩隊學生參加“知識聯想”搶答賽,比賽規則:①主持人依次給出兩次提示,第一次提示后答對得2分,第二次提示后答對得1分,沒搶到或答錯者不得分;②主持人給出第一個提示后開始搶答,第一輪搶答出錯失去第二輪答題資格;③每局比賽分兩輪,若第一輪搶答者給出正確答案,則此局比賽結束,若第一輪答題者答錯,主持人提示后另一隊直接答題。如果甲、乙兩隊搶到答題權機會均等,并且勢均力敵,第一個提示后答對概率均為;第二個提示后答對概率均為
,
為甲隊在一局比賽中的分.
(1)求甲在一局比賽中得分的分布列;
(2)若比賽共4局,求甲4局比賽中至少得6分的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場銷售某種商品的經驗表明,該商品每日的銷售量(單位:千克)與銷售價格
(單位:元/千克)滿足
,其中
,
為常數.已知銷售價格為7元/千克時,每日可售出該商品11千克.
(1)求的值;
(2)若該商品成本為5元/千克,試確定銷售價格值,使商場每日銷售該商品所獲利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解人們對“2019年3月在北京召開的第十三屆全國人民代表大會第二次會議和政協第十三屆全國委員會第二次會議”的關注度,某部門從年齡在15歲到65歲的人群中隨機調查了100人,并得到如圖所示的年齡頻率分布直方圖,在這100人中關注度非常髙的人數與年齡的統計結果如右表所示:
年齡 | 關注度非常高的人數 |
15 | |
5 | |
15 | |
23 | |
17 |
(Ⅰ)由頻率分布直方圖,估計這100人年齡的中位數和平均數;
(Ⅱ)根據以上統計數據填寫下面的列聯表,據此表,能否在犯錯誤的概率不超過
的前提下,認為以45歲為分界點的不同人群對“兩會”的關注度存在差異?
(Ⅲ)按照分層抽樣的方法從年齡在35歲以下的人中任選六人,再從六人中隨機選兩人,求兩人中恰有一人年齡在25歲以下的概率是多少.
45歲以下 | 45歲以上 | 總計 | |
非常髙 | |||
一般 | |||
總計 |
參考數據:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,點
在平面
內運動,使得二面角
的平面角與二面角
的平面角互余,則點
的軌跡是( )
A. 一段圓弧 B. 橢圓的一部分 C. 拋物線 D. 雙曲線的一支
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】阿基米德是古希臘偉大的哲學家、數學家、物理學家,對幾何學、力學等學科作出過卓越貢獻.為調查中學生對這一偉大科學家的了解程度,某調查小組隨機抽取了某市的100名高中生,請他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項的稱為“比較了解”,少于三項的稱為“不太了解”.他們的調查結果如下:
0項 | 1項 | 2項 | 3項 | 4項 | 5項 | 5項以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯表,并判斷是否有
的把握認為,了解阿基米德與選擇文理科有關?
比較了解 | 不太了解 | 合計 | |
理科生 | |||
文科生 | |||
合計 |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數;
(ii)從10人的樣本中隨機抽取3人,用表示這3人中文科生的人數,求
的分布列和數學期望.
參考數據:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“或
作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”;
丁說:“作品獲得一等獎”.
若這四位同學只有兩位說的話是對的,則獲得一等獎的作品是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com