【題目】如圖,在四棱錐中,
,底面四邊形
為直角梯形,
,
,
為線段
上一點.
(1)若,則在線段
上是否存在點
,使得
平面
?若存在,請確定
點的位置;若不存在,請說明理由
(2)己知,若異面直線
與
成
角,二而角
的余弦值為
,求
的長.
【答案】(1)存在,點是線段
上靠近點
的一個三等分點;(2)2.
【解析】
(1) 延長,
交于點
,連接
。通過證明
及
,
可得M為PB上的一個三等分點,且靠近點P。
(2)建立空間直角坐標系,寫出各個點的坐標,分別求得平面和平面
的法向量
,再根據二面角夾角的余弦值即可得參數t的值,進而求得CD的長。
解:(1)延長,
交于點
,連接
,則
平面
.
若平面
,由平面
平面
,
平面
,則
.
由,
,則
,
故點是線段
上靠近點
的一個三等分點.
(2)∵,
,
,
平面
,
平面
,
則平面
以點為坐標原點,以
,
所在的直線分別為
軸、
軸,過點
與平面
垂直的直線為
軸,建立如圖所示的直角坐標系,
則,
,
,
,則
,
,
設平面和平面
的法向量分別為
,
.
由,
得
即
,
令,則
,故
.
同理可求得.
于是,則
,解之得
(負值舍去),故
.
∴.
科目:高中數學 來源: 題型:
【題目】若直線l的極坐標方程為,曲線C的參數方程為
(
為參數).
若曲線上存在M,N兩點關于直線l對稱,求實數m的值;
若直線與曲線相交于P,Q兩點,且
,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著經濟的發展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調整前后的計算方法如下表:
個人所得稅稅率表(調整前) | 個人所得稅稅率表(調整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數 | 全月應納稅所得額 | 稅率(%) | 級數 | 全月應納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,
表示應納的稅,試寫出調整前后
關于
的函數表達式;
(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數分布表:
收入(元) | ||||||
人數 | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及
的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識宣講員,求兩個宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調整后小紅的實際收入比調整前增加了多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
且橢圓上存在一點
,滿足
.
(1)求橢圓的標準方程;
(2)已知分別是橢圓
的左、右頂點,過
的直線交橢圓
于
兩點,記直線
的交點為
,是否存在一條定直線
,使點
恒在直線
上?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著經濟的發展,個人收入的提高,自2019年1月1日起,個人所得稅起征點和稅率的調整.調整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應納稅所得額.依照個人所得稅稅率表,調整前后的計算方法如下表:
個人所得稅稅率表(調整前) | 個人所得稅稅率表(調整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數 | 全月應納稅所得額 | 稅率(%) | 級數 | 全月應納稅所得額 | 稅率(%) |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,
表示應納的稅,試寫出調整前后
關于
的函數表達式;
(2)某稅務部門在小紅所在公司利用分層抽樣方法抽取某月100個不同層次員工的稅前收入,并制成下面的頻數分布表:
收入(元) | ||||||
人數 | 30 | 40 | 10 | 8 | 7 | 5 |
①先從收入在及
的人群中按分層抽樣抽取7人,再從中選4人作為新納稅法知識宣講員,用
表示抽到作為宣講員的收入在
元的人數,
表示抽到作為宣講員的收入在
元的人數,隨機變量
,求
的分布列與數學期望;
②小紅該月的工資、薪金等稅前收入為7500元時,請你幫小紅算一下調整后小紅的實際收入比調整前增加了多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校藝術節對同一類的,
,
,
四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:
甲說:“是或
作品獲得一等獎”;
乙說:“作品獲得一等獎”;
丙說:“,
兩項作品未獲得一等獎”;
丁說:“是作品獲得一等獎”.
若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com