【題目】已知橢圓 (a>b>0)的焦點在圓x2+y2=3上,且離心率為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過原點O的直線l與橢圓C交于A,B兩點,F為右焦點,若△FAB為直角三角形,求直線l的方程.
【答案】(Ⅰ);(Ⅱ)
或
.
【解析】試題分析:(Ⅰ)由題意可得橢圓的焦點坐標,結合離心率,從而求出橢圓的方程;(Ⅱ)由
為直角三角形,對
與
是否垂直進行討論,從而分別求出直線
的方程.
試題解析:(Ⅰ)因為橢圓的焦點在x軸上,所以焦點為圓x2+y2=3與x軸的交點,即,
.
所以.
又離心率,所以a=2.
故所求橢圓方程為.
(Ⅱ)當△FAB為直角三角形時,顯然直線l斜率存在,
可設直線l方程為y=kx,設A(x1,y1),B(x2,y2).
(ⅰ)當FA⊥FB時, ,
.
由
消y得(4k2+1)x2-4=0.
則x1+x2=0, .
解得.
此時直線l的方程為.
(ⅱ)當FA與FB不垂直時,根據橢圓的對稱性,不妨設.
所以解得
所以
此時直線l的方程為.
綜上,直線l的方程為或
.
科目:高中數學 來源: 題型:
【題目】動點P為橢圓 (a>b>0)上異于橢圓頂點A(a,0)、B(﹣a,0)的一點,F1 , F2為橢圓的兩個焦點,動圓M與線段F1P、F1F2的延長線級線段PF2相切,則圓心M的軌跡為除去坐標軸上的點的( )
A.拋物線
B.橢圓
C.雙曲線的右支
D.一條直線
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,
.
(1)求函數 的最小正周期;
(2)若 ,且
,求
的值.
【答案】(1) (2)
【解析】試題分析:(1)根據二倍角公式和兩角和差公式得到,進而得到周期;(2)由
,得到
,
,由配湊角公式得到
,代入值得到函數值.
解析:
(1)由題意
=
所以 的最小正周期為
;
(2)由
又由 得
,所以
故 ,
故
【題型】解答題
【結束】
20
【題目】為響應十九大報告提出的實施鄉村振興戰略,某村莊投資 萬元建起了一座綠色農產品加工廠.經營中,第一年支出
萬元,以后每年的支出比上一年增加了
萬元,從第一年起每年農場品銷售收入為
萬元(前
年的純利潤綜合=前
年的 總收入-前
年的總支出-投資額
萬元).
(1)該廠從第幾年開始盈利?
(2)該廠第幾年年平均純利潤達到最大?并求出年平均純利潤的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓上的點到它的兩個焦的距離之和為
,以橢圓
的短軸為直徑的圓
經過這兩個焦點,點
,
分別是橢圓
的左、右頂點.
()求圓
和橢圓
的方程.
()已知
,
分別是橢圓
和圓
上的動點(
,
位于
軸兩側),且直線
與
軸平行,直線
,
分別與
軸交于點
,
.求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知圓O1與圓O2相交于A,B兩點,過點A作圓O1的切線交圓O2于點C,過點B作兩圓的割線,分別交圓O1 , 圓O2于點D,E,DE與AC相交于點P.
(1)求證:AD∥EC;
(2)若AD是圓O2的切線,且PA=3,PC=1,AD=6,求DB的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設實數x,y滿足不等式組 ,(2,1)是目標函數z=﹣ax+y取最大值的唯一最優解,則實數a的取值范圍是( )
A.(0,1)
B.(0,1]
C.(﹣∞,﹣2)
D.(﹣∞,﹣2]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】解答
(1)在公比為2的等比數列{an}中,a2與a5的等差中項是9 .求a1的值;
(2)若函數y=a1sin( φ),0<φ<π的一部分圖象如圖所示,M(﹣1,a1),N(3,﹣a1)為圖象上的兩點,設∠MON=θ,其中O為坐標原點,0<θ<π,求cos(θ﹣φ)的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種出口產品的關稅稅率,市場價格
(單位:千元)與市場供應量
(單位:萬件)之間近似滿足關系式:
,其中
、
均為常數.當關稅稅率為
時,若市場價格為5千元,則市場供應量約為1萬件;當關稅稅率為
時,若市場價格為7千元,則市場供應量約為2萬件.
(1)試確定、
的值;
(2)市場需求量(單位:萬件)與市場價格
近似滿足關系式:
.當
時,市場價格稱為市場平衡價格.當市場平衡價格不超過4千元時,試確定關稅稅率的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線AB為圓的切線,切點為B,點C在圓上,∠ABC的角平分線BE交圓于點E,DB垂直BE交圓于點D.
(1)證明:DB=DC;
(2)設圓的半徑為1,BC=3,延長CE交AB于點F,求△BCF外接圓的半徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com