【題目】(理)已知數列滿足
(
),首項
.
(1)求數列的通項公式;
(2)求數列的前
項和
;
(3)數列滿足
,記數列
的前
項和為
,
是△ABC的內角,若
對于任意
恒成立,求角
的取值范圍.
科目:高中數學 來源: 題型:
【題目】關于函數,下列說法正確的是( )
(1)是
的極小值點;
(2)函數有且只有1個零點;
(3)恒成立;
(4)設函數,若存在區間
,使
在
上的值域是
,則
.
A.(1) (2)B.(2)(4)C.(1) (2) (4)D.(1)(2)(3)(4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列與
滿足
,
.
(1)若,求數列
的通項公式;
(2)若,且數列
是公比等于2的等比數列,求
的值,使數列
也是等比數列;
(3)若,且
,數列
有最大值
與最小值
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于雙曲線:
(
),若點
滿足
,則稱
在
的外部;若點
滿足
,則稱
在
的內部.
(1)證明:直線上的點都在
的外部.
(2)若點的坐標為
,點
在
的內部或
上,求
的最小值.
(3)若過點
,圓
(
)在
內部及
上的點構成的圓弧長等于該圓周長的一半,求
、
滿足的關系式及
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于雙曲線:
(
),若點
滿足
,則稱
在
的外部;若點
滿足
,則稱
在
的內部.
(1)若直線上點都在
的外部,求
的取值范圍;
(2)若過點
,圓
(
)在
內部及
上的點構成的圓弧長等于該圓周長的一半,求
、
滿足的關系式及
的取值范圍;
(3)若曲線(
)上的點都在
的外部,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,小凳凳面為圓形,凳腳為三根細鋼管.考慮到鋼管的受力等因素,設計的小凳應滿足:三根細鋼管相交處的節點與凳面圓形的圓心
的連線垂直于凳面和地面,且
分細鋼管上下兩段的比值為
,三只凳腳與地面所成的角均為
.若
、
、
是凳面圓周的三等分點,
厘米,求凳子的高度
及三根細鋼管的總長度(精確到
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知表示不小于
的最小整數,例如
.
(1)設,
,若
,求實數
的取值范圍;
(2)設,
在區間
上的值域為
,集合
中元素的個數為
,求證:
;
(3)設(
),
,若對于
,都有
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖圓錐PO,軸截面PAB是邊長為2的等邊三角形,過底面圓心O作平行于母線PA的平面,與圓錐側面的交線是以E為頂點的拋物線的一部分,則該拋物線的焦點到其頂點E的距離為( )
A.1B.C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com