日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直角梯形中, 的中點, 的交點,將沿折起到的位置,如圖2.

圖1 圖2

(1)證明: 平面

(2)若平面平面,求二面角的余弦值.

【答案】(1)證明見解析;(2).

【解析】試題分析:(1)先證平面平面;(2)由已知得為二面角的平面角如圖,以為原點,建立空間直角坐標系,求出平面的法向量平面的法向量,面與面夾角為即得平面與平面夾角的余弦值.

試題解析:(1)在圖1中,

因為 的中點, ,所以

即在圖2中,

從而平面

,所以平面

1 2

(2)由已知,平面平面,又由(Ⅰ)知,

所以為二面角的平面角,所以

如圖,以為原點,建立空間直角坐標系,

因為

所以

設平面的法向量,平面的法向量,二面角

,得,取

,得,取

從而,由圖可知為鈍角.

即二面角的余弦值為

【方法點晴】本題主要考查線面垂直的判定定理及面面垂直的性質,利用空間向量求二面角,屬于難題.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某基地蔬菜大棚采用水培、無土栽培方式種植各類蔬菜.過去50周的資料顯示,該地周光照量(小時)都在30小時以上,其中不足50小時的周數有5周,不低于50小時且不超過70小時的周數有35周,超過70小時的周數有10周.根據統計,該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對應數據為如圖所示的折線圖.

(1)依據數據的折線圖,是否可用線性回歸模型擬合的關系?請計算相關系數并加以說明(精確到0.01).,則線性相關程度很高,可用線性回歸模型擬合)

(2)蔬菜大棚對光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運行臺數受周光照量限制,并有如下關系:

周光照量(單位:小時)

光照控制儀最多可運行臺數

3

2

1

若某臺光照控制儀運行,則該臺光照控制儀周利潤為3000元;若某臺光照控制儀未運行,則該臺光照控制儀周虧損1000元.若商家安裝了3臺光照控制儀,求商家在過去50周周總利潤的平均值.

附:相關系數公式,參考數據

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方體的棱長為 1, 的中點, 為線段上的動點,過點A、P、Q的平面截該正方體所得的截面記為.則下列命題正確的是__________(寫出所有正確命題的編號).

①當時, 為四邊形;②當時, 為等腰梯形;③當時, 為六邊形;④當時, 的面積為.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的一個焦點與上、下頂點構成直角三角形,以橢圓的長軸長為直徑的圓與直線相切.

(1)求橢圓的標準方程;

(2)設過橢圓右焦點且不平行于軸的動直線與橢圓相交于兩點,探究在軸上是否存在定點,使得為定值?若存在,試求出定值和點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是我國古代著名數學經典.其中對勾股定理的論術比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺.問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )

(注:1丈=10尺=100寸,

A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直三棱柱中, 分別是棱的中點,點在棱上,已知

(1)求證: 平面

(2)設點在棱上,當為何值時,平面平面

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了展示中華漢字的無窮魅力,傳遞傳統文化,提高學習熱情,某校開展《中國漢字聽寫大會》的活動.為響應學校號召,2(9)班組建了興趣班,根據甲、乙兩人近期8次成績畫出莖葉圖,如圖所示(把頻率當作概率).

(1)求甲、乙兩人成績的平均數和中位數;

(2)現要從甲、乙兩人中選派一人參加比賽,從統計學的角度,你認為派哪位學生參加比較合適?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中點,F在棱AC上,且AF=3FC

(1)求三棱錐D-ABC的體積

(2)求證:平面DAC⊥平面DEF;

(3)若MDB中點,N在棱AC上,且CN=CA,求證:MN∥平面DEF

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖 1,在直角梯形中, ,且.現以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直, 的中點,如圖 2.

(1)求證: 平面

(2)求證: 平面

(3)求點到平面的距離.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 涩涩导航 | 国产天天操天天干 | 麻豆沈芯语在线观看 | 超碰97成人 | 国产综合精品一区二区三区 | 国产精品视频污 | 欧美日韩影院 | 国产福利视频 | 成人av免费在线观看 | 欧美一区二区二区 | 国产青青青 | 九色91| 久久国内精品 | 精品久久精品 | 美女视频久久 | 国产精品视频一区二区三区不卡 | 亚洲精品一区二区三区在线 | 国产精品女教师av久久 | av一区二区三区四区 | 国产福利资源 | 久久综合色视频 | 精品久久久久一区二区国产 | 欧美在线a | 亚洲高清资源在线 | 日韩在线精品 | 午夜精品偷拍 | 青青久久久 | 国产在线观看91一区二区三区 | 99热在线播放 | 青青草久草在线 | www在线播放| 久久久久成人精品 | 黄色成人免费看 | 天天插天天操天天干 | 91精品福利 | 免费在线小视频 | 激情综合色综合久久综合 | 国产精品一二三四区 | 亚洲国产精品一区二区久久 | 国际精品久久 | 日本中文字幕一区二区有码在线 |