【題目】已知橢圓的一個(gè)焦點(diǎn)與上、下頂點(diǎn)構(gòu)成直角三角形,以橢圓
的長軸長為直徑的圓與直線
相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓右焦點(diǎn)且不平行于軸的動直線與橢圓
相交于
兩點(diǎn),探究在
軸上是否存在定點(diǎn)
,使得
為定值?若存在,試求出定值和點(diǎn)
的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)定點(diǎn)為
.
【解析】試題分析:(1)由橢圓幾何意義得,再根據(jù)圓心到切線距離等于半徑得
,解得
,
(2)先根據(jù)向量數(shù)量積化簡
,再聯(lián)立直線方程與橢圓方程,利用韋達(dá)定理代人化簡得
,最后根據(jù)k的任意性確定點(diǎn)
的坐標(biāo)及定值
試題解析:(1)由題意知, ,解得
,
則橢圓的方程為
.
(2)當(dāng)直線的斜率存在時(shí),設(shè)直線,
聯(lián)立,得
,
∴.
假設(shè)軸上存在定點(diǎn)
,使得
為定值,
∴
.
要使為定值,則
的值與
無關(guān),∴
,
解得,此時(shí)
為定值,定點(diǎn)為
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,圓心為
,定點(diǎn)
,
為圓
上一點(diǎn),線段
上一點(diǎn)
滿足
,直線
上一點(diǎn)
,滿足
.
(Ⅰ)求點(diǎn)的軌跡
的方程;
(Ⅱ)為坐標(biāo)原點(diǎn),
是以
為直徑的圓,直線
與
相切,并與軌跡
交于不同的兩點(diǎn)
.當(dāng)
且滿足
時(shí),求
面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)里工人的工資與其生產(chǎn)利潤滿足線性相關(guān)關(guān)系,現(xiàn)統(tǒng)計(jì)了100名工人的工資(元)與其生產(chǎn)利潤
(千元)的數(shù)據(jù),建立了
關(guān)于
的回歸直線方程為
,則下列說法正確的是( )
A. 工人甲的生產(chǎn)利潤為1000元,則甲的工資為130元
B. 生產(chǎn)利潤提高1000元,則預(yù)計(jì)工資約提高80元
C. 生產(chǎn)利潤提高1000元,則預(yù)計(jì)工資約提高130元
D. 工人乙的工資為210元,則乙的生產(chǎn)利潤為2000元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,在等腰梯形中,
.把
沿
折起,使得
,得到四棱錐
.如圖2所示.
(1)求證:面面
;
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:三棱錐中,側(cè)面
垂直底面,
是底面最長的邊;圖1是三棱錐
的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐
的直觀圖的一部分,其中點(diǎn)
在
平面內(nèi).
(Ⅰ)請?jiān)趫D2中將三棱錐的直觀圖補(bǔ)充完整,并指出三棱錐
的哪些面是直角三角形;
(Ⅱ)設(shè)二面角的大小為
,求
的值;
(Ⅲ)求點(diǎn)到面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,
,
,
,若該三棱錐的四個(gè)頂點(diǎn)均在同一球面上,則該球的體積為( )
A. B.
C.
D.
【答案】D
【解析】在三棱錐中,因?yàn)?/span>
,
,
,所以
,則該幾何體的外接球即為以
為棱長的長方體的外接球,則
,其體積為
;故選D.
點(diǎn)睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得
從而幾何體的外接球即為以
為棱長的長方體的外接球,也是處理本題的技巧所在.
【題型】單選題
【結(jié)束】
21
【題目】已知函數(shù),則
的大致圖象為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,
,
是
的中點(diǎn),
是
與
的交點(diǎn),將
沿
折起到
的位置,如圖2.
圖1 圖2
(1)證明: 平面
;
(2)若平面平面
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的函數(shù)
.
(1)當(dāng)時(shí),求函數(shù)
在點(diǎn)
處的切線方程;
(2)設(shè),討論函數(shù)
的單調(diào)區(qū)間;
(3)若函數(shù)沒有零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,點(diǎn)
,
分別是側(cè)面
與底面
的中心,則下列命題中錯(cuò)誤的個(gè)數(shù)為( )
①平面
; ②異面直線
與
所成角為
;
③與平面
垂直; ④
.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】對于①,∵DF,DF
平面
,
平面
,∴
平面
,正確;
對于②,∵DF,∴異面直線
與
所成角即異面直線
與
所成角,△
為等邊三角形,故異面直線
與
所成角為
,正確;
對于③,∵⊥
,
⊥CD,且
CD=D,∴
⊥平面
,即
⊥平面
正確;
對于④,,正確,
故選:A
【題型】單選題
【結(jié)束】
8
【題目】已知函數(shù)在區(qū)間
上單調(diào)遞增,則實(shí)數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com