已知向量a=(2cosx,2sinx),b=(cosx,cosx),設(shè)函數(shù)f(x)=a•b-
,求:
(1)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)若, 且α∈(
,π). 求α.
(1),函數(shù)
的單調(diào)遞增區(qū)間為
;
(2)或
.
解析試題分析:(1)利用向量數(shù)量積的坐標(biāo)運(yùn)算求出,再將其化為一角一函數(shù)形式,然后根據(jù)三角函數(shù)的性質(zhì)求最小正周期和單調(diào)增區(qū)間;(2)由(1)得函數(shù)的解析式,將
,代入化簡(jiǎn)得
,又
,所以
,由
得出
.
試題解析:=
=
=
-3分
(1)函數(shù)的最小正周期為
5分
由,得
(
)
∴函數(shù)的單調(diào)遞增區(qū)間為
8分
(2)∵,
∴,
∴ 11分
∴,∵
,∴
,
∴或
,∴
或
14分
考點(diǎn):向量數(shù)量積的計(jì)算、三角函數(shù)的性質(zhì)、二倍角公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在中,內(nèi)角
所對(duì)邊長(zhǎng)分別為
,
,
.
(1)求的最大值; (2)求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)是函數(shù)
圖象上的任意兩點(diǎn),若
時(shí),
的最小值為
,且函數(shù)
的圖像經(jīng)過(guò)點(diǎn)
.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)在中,角
的對(duì)邊分別為
,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=sinx+cosx,f′(x)是f(x)的導(dǎo)函數(shù),F(x)=f(x)f′(x)+f2(x)
(Ⅰ)求F(x)的最小正周期及單調(diào)區(qū)間;
(Ⅱ)求函數(shù)F(x)在上的值域;
(Ⅲ)若f(x)=2f′(x),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,.
(1)求角C的大。
(2)若△ABC的外接圓直徑為1,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若的圖象關(guān)于直線
對(duì)稱,其中
(1)求的解析式;
(2)將的圖象向左平移
個(gè)單位,再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉?lái)的2倍(縱坐標(biāo)不變)后得到
的圖象;若函數(shù)
的圖象與
的圖象有三個(gè)交點(diǎn)且交點(diǎn)的橫坐標(biāo)成等比數(shù)列,求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com