日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】設復平面上點Z1 , Z2 , …,Zn , …分別對應復數z1 , z2 , …,zn , …;
(1)設z=r(cosα+isinα),(r>0,α∈R),用數學歸納法證明:zn=rn(cosnα+isinnα),n∈Z+
(2)已知 ,且 (cosα+isinα)(α為實常數),求出數列{zn}的通項公式;
(3)在(2)的條件下,求 |+….

【答案】
(1)證明:當n=1時,左邊=r(cosθ+isinθ),右邊=r(cosθ+isinθ),

左邊=右邊,即n=1等式成立;

假設當n=k時等式成立,即:[r(cosθ+isinθ)]k=rk(coskθ+isinkθ),

則當n=k+1時,[r(cosθ+isinθ)]k+1=[r(cosθ+isinθ)]kr(cosθ+isinθ)

=rk(coskθ+isinkθ)rk(cosθ+isinθ)

=rk+1[(coskθcosθ﹣sinkθsinθ)+i(sinkθcosθ+coskθsinθ)]

=rk+1[cos(k+1)θ+isin(k+1)θ],

即當n=k+1時,等式成立;

綜上,對n∈N+,zn=rn(cosnα+isinnα)


(2)解: = =1,

(cosα+isinα)(α為實常數),

∴數列{zn}是首項為Z1=1,公比為q= (cosα+isinα)的等比數列,

∴該數列的通項公式為Zn=Z1qn1= [cos(n﹣1)α+isin(n﹣1)α]


(3)解:在(2)的條件下, = =( cosα﹣1, sinα)

∴| |=

= [cosnα﹣2cos(n﹣1)α+i(sinnα﹣2sin(n﹣1)α)],

= =

|+…= × =


【解析】(1)按照數學歸納法的基本步驟即可證明等式成立;(2) = =1,且 (cosα+isinα)(α為實常數),可得數列{zn}是首項為Z1=1,公比為q= (cosα+isinα)的等比數列,利用等比數列的通項公式即可得出.(3)在(2)的條件下, = [cosnα﹣2cos(n﹣1)α+i(sinnα﹣2sin(n﹣1)α)],再利用數列極限求和公式即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知X的分布列為

X

﹣1

0

1

P

設y=2x+3,則E(Y)的值為(
A.
B.4
C.﹣1
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC的內角A,B,C滿足sin2A+sin(A﹣B+C)=sin(C﹣A﹣B)+ ,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對的邊,在下列不等式一定成立的是(  )
A.bc(b+c)>8
B.ab(a+b)>16
C.6≤abc≤12
D.12≤abc≤24

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的右焦點為F2(1,0),點H(2, )在橢圓上.
(1)求橢圓的方程;
(2)點M在圓x2+y2=b2上,且M在第一象限,過M作圓x2+y2=b2的切線交橢圓于P,Q兩點,求證:△PF2Q的周長是定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學名著《九章算術》的論割圓術中有:“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣.”它體現了一種無限與有限的轉化過程.比如在表達式1+ 中“…”即代表無數次重復,但原式卻是個定值,它可以通過方程1+ =x求得x= .類比上述過程,則 =(
A.3
B.
C.6
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,點P在正方體ABCD﹣A1B1C1D1的表面上運動,且P到直線BC與直線C1D1的距離相等,如果將正方體在平面內展開,那么動點P的軌跡在展開圖中的形狀是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,焦點在x軸的橢圓,離心率e= ,且過點A(﹣2,1),由橢圓上異于點A的P點發出的光線射到A點處被直線y=1反射后交橢圓于Q點(Q點與P點不重合).

(1)求橢圓標準方程;
(2)求證:直線PQ的斜率為定值;
(3)求△OPQ的面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分別是棱A1B1、AB、A1D1的中點.

(Ⅰ)求證:GE⊥平面FCC1
(Ⅱ)求二面角B﹣FC1﹣C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面四邊形ABCD中,已知∠A= ,∠B= ,AB=6.在AB邊上取點E使得BE=1,連結EC,ED,若∠CED= ,EC= .則CD=

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一区二区不卡视频在线观看 | 精品视频免费观看 | 日本a在线 | 欧美激情一区二区三区蜜桃视频 | 欧美成人一区二免费视频软件 | 国产中文一区二区三区 | 成年人网站免费在线观看 | 日本不卡在线 | 日本不卡精品 | 四虎影院最新地址 | 色欧美日韩 | 日本一区二区精品视频 | 在线观看免费的网站www | 欧美成人一区二区三区片免费 | 欧美在线视频网站 | 国产精品久久国产愉拍 | av免费网站在线观看 | 亚洲成a人v欧美综合天堂麻豆 | 欧美日韩一 | 欧美xxxⅹ性欧美大片 | 久久久久国产一区二区三区小说 | 九九精品视频在线观看 | 成人免费福利视频 | 草久av| 精品国产一区二区三区不卡蜜臂 | 秋霞久久久| 成人国产在线视频 | 天天操天天碰 | 欧美日韩一区在线观看 | 亚洲欧美日韩在线一区二区 | 99精品视频免费观看 | 黄色一级网址 | 精品亚洲国产成av人片传媒 | 久久99精品久久久久久久 | 涩涩视频免费观看 | 欧美精品一区三区 | 大陆毛片 | 日韩专区在线 | 午夜精品久久久久久久久 | 99久久99久久精品免费看蜜桃 | 国产三级在线免费观看 |