【題目】(本小題滿分10分)
已知如下等式: ,
,
,
當(dāng)時(shí),試猜想
的值,并用數(shù)學(xué)歸納法給予證明.
【答案】解:由已知,猜想……………………………(2分)
下面用數(shù)學(xué)歸納法給予證明:
(1)當(dāng)時(shí),由已知得原式成立; ………………………………………………(3分)
(2)假設(shè)當(dāng)時(shí),原式成立,即
……(4分)
那么,當(dāng)時(shí),
=
故時(shí),原式也成立。……………………………………………………(11分)
由(1)、(2)知成立 ……………(12分)
【解析】先猜想,然后再用數(shù)學(xué)歸納法進(jìn)行證明.
證明時(shí)分兩個(gè)步驟:第一步,先驗(yàn)證是當(dāng)n=1時(shí),等式是否成立;
第二步,假設(shè)n=k時(shí),等式成立;再證明當(dāng)n=k+1時(shí),等式也成立,再證明時(shí)一定要用上歸納假設(shè).否則證明無效
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
),
(
).
(1)討論的單調(diào)性;
(2)設(shè),
,若
(
)是
的兩個(gè)零點(diǎn),且
,
試問曲線在點(diǎn)
處的切線能否與
軸平行?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左頂點(diǎn)為
,右焦點(diǎn)為
,過點(diǎn)
且斜率為1的直線交橢圓
于另一點(diǎn)
,交
軸于點(diǎn)
,
.
(1)求橢圓的方程;
(2)過點(diǎn)作直線
與橢圓
交于
兩點(diǎn),連接
(
為坐標(biāo)原點(diǎn))并延長交橢圓
于點(diǎn)
,求
面積的最大值及取最大值時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù);
(2)設(shè)函數(shù),其中a∈(1,2),求函數(shù)g(x)在區(qū)間[1,e]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x﹣1.
(1)求f(x)的函數(shù)解析式,并用分段函數(shù)的形式給出;
(2)作出函數(shù)f(x)的簡圖;
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間及最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,且
,
,在數(shù)列
中,
,
,
.
(1)求證: 是等比數(shù)列;
(2)若,求數(shù)列
的前
項(xiàng)和
;
(3)求數(shù)列的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某儀器經(jīng)過檢驗(yàn)合格才能出廠,初檢合格率為:若初檢不合格,則需要進(jìn)行調(diào)試,經(jīng)調(diào)試后再次對(duì)其進(jìn)行檢驗(yàn);若仍不合格,作為廢品處理,再檢合格率為
.每臺(tái)儀器各項(xiàng)費(fèi)用如表:
項(xiàng)目 | 生產(chǎn)成本 | 檢驗(yàn)費(fèi)/次 | 調(diào)試費(fèi) | 出廠價(jià) |
金額(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每臺(tái)儀器能出廠的概率;
(Ⅱ)求生產(chǎn)一臺(tái)儀器所獲得的利潤為1600元的概率(注:利潤出廠價(jià)
生產(chǎn)成本
檢驗(yàn)費(fèi)
調(diào)試費(fèi));
(Ⅲ)假設(shè)每臺(tái)儀器是否合格相互獨(dú)立,記為生產(chǎn)兩臺(tái)儀器所獲得的利潤,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】f(x)= (sinx+cosx+|sinx﹣cosx|)的值域是( )
A.[﹣1,1]
B.[﹣ ,
]
C.[﹣ ,1]
D.[﹣1, ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓:
上一點(diǎn)
向
軸作垂線,垂足為右焦點(diǎn)
,
、
分別為橢圓
的左頂點(diǎn)和上頂點(diǎn),且
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動(dòng)直線與橢圓
交于
、
兩點(diǎn),且以
為直徑的圓恒過坐標(biāo)原點(diǎn)
.問是否存在一個(gè)定圓與動(dòng)直線
總相切.若存在,求出該定圓的方程;若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com