【題目】定圓,動圓
過點
且與圓
相切,記圓心
的軌跡為
.
(1)求軌跡的方程;
(2)設點在
上運動,
與
關于原點對稱,且
,當
的面積最小時, 求直線
的方程.
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數,且當x≥0時,f(x)=loga(x+1)(a>0,且a≠1).
(1)求函數f(x)的解析式;
(2)若-1<f(1)<1,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
已知曲線的參數方程為
(
為參數),以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求曲線的直角坐標方程及曲線
上的動點
到坐標原點
的距離
的最大值;
(Ⅱ)若曲線與曲線
相交于
,
兩點,且與
軸相交于點
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】語文中有回文句,如:“上海自來水來自海上”,倒過來讀完全一樣。數學中也有類似現象,如:88,454,7337,43534等,無論從左往右讀,還是從右往左讀,都是同一個數,稱這樣的數為“回文數”!
二位的回文數有11,22,33,44,55,66,77,88,99,共9個;
三位的回文數有101,111,121,131,…,969,979,989,999,共90個;
四位的回文數有1001,1111,1221,…,9669,9779,9889,9999,共90個;
由此推測:11位的回文數總共有_________個.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校900名學生在一次百米測試中,成績全部介于13秒與18 秒之間,利用分層抽樣的方法抽取其中若干個樣本,將測試結果按如下方式分成五組:第一組[13,14),第二組[14,15),…,第五組[17,18],有關數據見下表:
各組組員數 | 各組抽取人數 | |
[13,14) | 54 | a |
[14,15) | b | 8 |
[15,16) | 342 | 19 |
[16,17) | 288 | c |
[17,18] | d |
(1)求a,b,c,d的值;
(2)若樣本第一組中只有一個女生,其他都是男生,第五組則只有一個男生,其他都是女生,現從第一、五組中各抽一個同學組成一個新的組,求這個新組恰好由一個男生和一個女生構成的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為研究冬季晝夜溫差大小對某反季節大豆新品種發芽率的影響,某校課外興趣小組記錄了組晝夜溫差與
顆種子發芽數,得到如下資料:
組號 | 1 | 2 | 3 | 4 | 5 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
經分析,這組數據具有較強的線性相關關系,因此該小組確定的研究方案是:先從這五組數據中選取組數據求出線性回歸方程,再用沒選取的
組數據進行檢驗.
(1)若選取的是第組的數據,求出
關于
的線性回歸方程
;
(2)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(參考公式:,
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (
)的離心率為
,
,
,
,
的面積為1.
(1)求橢圓C的方程;
(2)斜率為2的直線與橢圓交于、
兩點
,求直線
的方程;
(3)在軸上是否存在一點
,使得過點
的任一直線與橢圓若有兩個交點
、
則都有
為定值?若存在,求出點
的坐標及相應的定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】德化瓷器是泉州的一張名片,已知瓷器產品的質量采用綜合指標值
進行衡量,
為一等品;
為二等品;
為三等品.某瓷器廠準備購進新型窯爐以提高生產效益,在某供應商提供的窯爐中任選一個試用,燒制了一批產品并統計相關數據,得到下面的頻率分布直方圖:
(1)估計該新型窯爐燒制的產品為二等品的概率;
(2)根據陶瓷廠的記錄,產品各等次的銷售率(某等次產品銷量與其對應產量的比值)及單件售價情況如下:
一等品 | 二等品 | 三等品 | |
銷售率 | |||
單件售價 |
|
|
|
根據以往的銷售方案,未售出的產品統一按原售價的全部處理完.已知該瓷器廠認購該窯爐的前提條件是,該窯爐燒制的產品同時滿足下列兩個條件:
①綜合指標值的平均數(同一組中的數據用該組區間的中點值作代表)不小于;
②單件平均利潤值不低于元.
若該新型窯爐燒制產品的成本為
元/件,月產量為
件,在銷售方案不變的情況下,根據以上圖表數據,分析該新型窯爐是否達到瓷器廠的認購條件.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com