【題目】橢圓的左、右焦點(diǎn)分別為
、
,離心率為
,過(guò)焦點(diǎn)
且垂直于x軸的直線被橢圓C截得的線段長(zhǎng)為1.
Ⅰ
求橢圓C的方程;
Ⅱ
點(diǎn)
為橢圓C上一動(dòng)點(diǎn),連接
,
,設(shè)
的角平分線PM交橢圓C的長(zhǎng)軸于點(diǎn)
,求實(shí)數(shù)m的取值范圍.
【答案】(1);(2)
【解析】
(1)由題意分別確定a,b的值求解橢圓方程即可;
(2)利用角平分線到兩邊的距離相等,結(jié)合橢圓方程分類討論求解實(shí)數(shù)m的取值范圍即可.
1
由于
,將
代入橢圓方程
,得
,
由題意知,即
.
又,
,
.
故橢圓C的方程為;
2
設(shè)
,
當(dāng)時(shí),
當(dāng)
時(shí),直線
的斜率不存在,易知
或
.
若,則直線
的方程為
.
由題意得,
,
.
若,同理可得
.
當(dāng)
時(shí),
設(shè)直線,
的方程分別為
,
由題意知,
,
,且
,
,
即.
,
且
,
.
整理得,,
故且
.
綜合可得
.
當(dāng)時(shí),同理可得
.
綜上所述,m的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
(
)的左、右焦點(diǎn)分別為
,過(guò)點(diǎn)
的直線
交
于
,
兩點(diǎn),
的周長(zhǎng)為
,
的離心率
(Ⅰ)求的方程;
(Ⅱ)設(shè)點(diǎn),
,過(guò)點(diǎn)
作
軸的垂線
,試判斷直線
與直線
的交點(diǎn)是否恒在一條定直線上?若是,求該定直線的方程;否則,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題方程
表示雙曲線;命題
不等式
的解集是
.
為假,
為真,求
的取值范圍.
【答案】
【解析】試題分析:由命題方程
表示雙曲線,求出
的取值范圍,由命題
不等式
的解集是
,求出
的取值范圍,由
為假,
為真,得出
一真一假,分兩種情況即可得出
的取值范圍.
試題解析:
真
,
真
或
∴
真
假
假
真
∴范圍為
【題型】解答題
【結(jié)束】
18
【題目】如圖,設(shè)是圓
上的動(dòng)點(diǎn),點(diǎn)
是
在
軸上的投影,
為
上一點(diǎn),且
.
(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)
的軌跡
的方程;
(2)求過(guò)點(diǎn)且斜率為
的直線被
所截線段的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某籃球運(yùn)動(dòng)員的投籃命中率為,他想提高自己的投籃水平,制定了一個(gè)夏季訓(xùn)練計(jì)劃
為了了解訓(xùn)練效果,執(zhí)行訓(xùn)練前,他統(tǒng)計(jì)了10場(chǎng)比賽的得分,計(jì)算出得分的中位數(shù)為15分,平均得分為15分,得分的方差為
執(zhí)行訓(xùn)練后也統(tǒng)計(jì)了10場(chǎng)比賽的得分,成績(jī)莖葉圖如圖所示:
請(qǐng)計(jì)算該籃球運(yùn)動(dòng)員執(zhí)行訓(xùn)練后統(tǒng)計(jì)的10場(chǎng)比賽得分的中位數(shù)、平均得分與方差;
如果僅從執(zhí)行訓(xùn)練前后統(tǒng)計(jì)的各10場(chǎng)比賽得分?jǐn)?shù)據(jù)分析,你認(rèn)為訓(xùn)練計(jì)劃對(duì)該運(yùn)動(dòng)員的投籃水平的提高是否有幫助?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖,過(guò)拋物線上一定點(diǎn)
,作兩條直線分別交拋物線于
,
.
(1)求該拋物線上縱坐標(biāo)為的點(diǎn)到其焦點(diǎn)
的距離;
(2)當(dāng)與
的斜率存在且傾斜角互補(bǔ)時(shí),求
的值,并證明直線
的斜率是非零常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方體中,底面
是邊長(zhǎng)為
的正方形,對(duì)角線
與
相交于點(diǎn)
,點(diǎn)
在線段
上,且
,
與底面
所成角為
.
(1)求證:;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐A-BCDE中,底面BCDE為矩形,側(cè)面ABC⊥底面BCDE,側(cè)面ABE⊥底面BCDE,BC=2,CD=4。
(I)證明:AB⊥面BCDE;
(II)若AD=2,求二面角C-AD-E的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知首項(xiàng)為的等比數(shù)列
不是遞減數(shù)列,其前n項(xiàng)和為
,且
成等差數(shù)列。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的最大項(xiàng)的值與最小項(xiàng)的值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com