【題目】已知函數,直線
:
.
(Ⅰ)設是
圖象上一點,
為原點,直線
的斜率
,若
在
上存在極值,求
的取值范圍;
(Ⅱ)是否存在實數,使得直線
是曲線
的切線?若存在,求出
的值;若不存在,說明理由;
(Ⅲ)試確定曲線與直線
的交點個數,并說明理由.
【答案】,(Ⅲ)見解析
【解析】
(Ⅰ)先根據斜率公式列再求導數及其零點,最后根據條件列不等式,解得結果,(Ⅱ)設切點,根據導數幾何意義得斜率,再根據點斜式得切線方程,最后根據切線過(0,-1)點列方程,解得切點坐標,即得
的值;(Ⅲ)先變量分離,轉化為研究函數
圖象,利用導數研究其單調性,再結合函數圖象確定交點個數.
(Ⅰ)∵,∴
,解得
.
由題意得: ,解得
.
(Ⅱ)假設存在實數,使得直線是曲線
的切線,令切點
,
∴切線的斜率.
∴切線的方程為,
又∵切線過(0,-1)點,
∴.
解得,∴
,
∴.
(Ⅲ)由題意,令, 得
.
令, ∴
,由
,解得
.
∴在(0,1)上單調遞增,在
上單調遞減,
∴,又
時,
;
時,
,
時,只有一個交點;
時,有兩個交點;
時,沒有交點.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ+ρsinθ=1,曲線C的極坐標方程為ρsin2θ=8cosθ.
(1)求直線l與曲線C的直角坐標方程;
(2)設點M(0,1),直線l與曲線C交于不同的兩點P,Q,求|MP|+|MQ|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線C:,O為坐標原點,F為C的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.若
OMN為直角三角形,則|MN|=
A. B. 3 C.
D. 4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列說法中,正確的序號是( )
①“b=2”是“1,b,4成等比數列”的充要條件;
②“雙曲線與橢圓
有共同焦點”是真命題;
③若命題p∨¬q為假命題,則q為真命題;
④命題p:x∈R,x2﹣x+1>0的否定是:x∈R,使得x2﹣x+1≤0.
A.①②B.②③④C.②③D.②④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,四棱錐P﹣ABCD中,平面PAD⊥平面ABCD,PA=PD,四邊形ABCD為等腰梯形,BC∥AD,BC=CD
AD=1,E為PA的中點.
(1)求證:EB∥平面PCD;
(2)求平面PAC與平面PCD所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】微信運動,是由騰訊開發的一個類似計步數據庫的公眾賬號.用戶可以通過關注微信運動公眾號查看自己每天或每月行走的步數,同時也可以和其他用戶進行運動量的或點贊.加入微信運動后,為了讓自己的步數能領先于朋友,人們運動的積極性明顯增強,下面是某人2018年1月至2018年11月期間每月跑步的平均里程(單位:十公里)的數據,繪制了下面的折線圖.
根據折線圖,下列結論正確的是( )
A. 月跑步平均里程的中位數為月份對應的里程數
B. 月跑步平均里程逐月增加
C. 月跑步平均里程高峰期大致在、
月
D. 月至
月的月跑步平均里程相對于
月至
月,波動性更小,變化比較平穩
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,過定點
作不垂直于x軸的直線
,交拋物線于A,B兩點.
(1)設O為坐標原點,求證:為定值;
(2)設線段的垂直分線與x軸交于點
,求n的取值范圍;
(3)設點A關于x軸的對稱點為D,求證:直線過定點,并求出定點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com