【題目】移動公司為了提升“停課不停學(xué)”期間某片區(qū)網(wǎng)絡(luò)信號,保證廣大師生網(wǎng)絡(luò)授課、聽課的質(zhì)量,臨時在坡度為的山坡上加裝了信號塔
(如圖所示),信號塔底端
到坡底
的距離為3.9米.同時為了提醒市民,在距離斜坡底
點(diǎn)4.4米的水平地面上立了一塊警示牌
.當(dāng)太陽光線與水平線成
角時,測得信號塔
落在警示牌上的影子
長為3米,則信號塔
的高約為(結(jié)果精確到十分位,參考數(shù)據(jù):
,
,
)
A.11.9米B.10.4米C.11.4米D.13.4米
【答案】A
【解析】
如圖,延長PE,交BN于F,延長PQ,交BN于H,設(shè)QH=x米,根據(jù)坡度可求出x的值,進(jìn)而可求出AH的值,根據(jù)∠HFP的正切值可求出NF的長,進(jìn)而求出HF的長,利用∠HFP的正切值可求出PH的長,即可求出PQ的長.
如圖,延長PE,交BN于F,延長PQ,交BN于H,設(shè)QH=x米,
∵坡度,
∴AH=2.4x,
∵AQ=3.9,
∴x2+(2.4x)2=3.92,
解得:x=1.5,(負(fù)值舍去)
∴AH=2.4x=3.6,
∵NE=3,∠HFP=53°,
∴NF=≈
,
∴HF=AH+AN+NF=3.6+4.4+=8+
,
∴PH=HF·tan∠HFP≈(8+)×1.3=13.4,
∴PQ=PH-QH=11.9(米),
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,∠ACB=45°,D為AC上一點(diǎn),AD=5,連接BD,將△ABD沿BD翻折至△EBD,點(diǎn)A的對應(yīng)點(diǎn)E點(diǎn)恰好落在邊BC上.延長BC至點(diǎn)F,連接DF,若CF=2,tan∠ABD=
,則DF長為( )
A.B.
C.5
D.7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,
,
,
平分
交于點(diǎn)
,
于點(diǎn)
,下列結(jié)論:①
;②
;③
;④點(diǎn)
在線段
的垂直平分線上,其中正確的個數(shù)有( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,
,
,
,點(diǎn)
從點(diǎn)
出發(fā),以每秒1個單位長度的速度沿
向點(diǎn)
運(yùn)動,過點(diǎn)
作
交
的直角邊于點(diǎn)
,以
為邊向
右側(cè)作正方形
.設(shè)點(diǎn)
的運(yùn)動時間為
秒,正方形
與
的重疊部分的面積為
.
(1)用含的代數(shù)式表示線段
的長;
(2)求與
的函數(shù)關(guān)系式,并直接寫出自變量
的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是反比例函數(shù)y=(x>0)圖象上一點(diǎn),過點(diǎn)A作AB⊥x軸于點(diǎn)B,連接OA,OB,tan∠OAB=
.點(diǎn)C是反比例函數(shù)y=
(x>0)圖象上一動點(diǎn),連接AC,OC,若△AOC的面積為
,則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,等腰的底邊
在
軸上,已知
,拋物線
(其中
)經(jīng)過
三點(diǎn),雙曲線
(其中
)經(jīng)過點(diǎn)
軸,
軸,垂足分別為
且
(1)求出的值;當(dāng)
為直角三角形時,請求出
的表達(dá)式;
(2)當(dāng)為正三角形時,直線
平分
,求
時
的取值范圍;
(3)拋物線(其中
)有一時刻恰好經(jīng)過
點(diǎn),且此時拋物線與雙曲線
(其中
)有且只有一個公共點(diǎn)
(其中
),我們不妨把此時刻的
記作
,請直接寫出拋物線
(其中
)與雙曲線
(其中
)有一個公共點(diǎn)時
的取值范圍.(
是已知數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,A(-4,3),B(0,1),將線段AB沿
軸的正方向平移
個單位,得到線段A′B′,且A′,B′恰好都落在反比例函數(shù)
的圖象上.
(1)用含的代數(shù)式表示點(diǎn)A′,B′的坐標(biāo);
(2)求的值和反比例函數(shù)
的表達(dá)式;
(3)點(diǎn)為反比例函數(shù)
圖象上的一個動點(diǎn),直線
與
軸交于點(diǎn)
,若
,請直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市對進(jìn)貨價為10元/千克的某種蘋果的銷售情況進(jìn)行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)應(yīng)怎樣確定銷售價,使該品種蘋果的每天銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(t,1)在第一象限,將OA繞點(diǎn)O順時針旋轉(zhuǎn)45°得到OB,若反比例數(shù)y=(k>0)的圖象經(jīng)過點(diǎn)A、B,則k=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com