已知如圖在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥BD交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論。
(1)證明:∵四邊形ABCD是平行四邊形,
∴∠4=∠C,AD=CB,AB=CD.
∵點E、F分別是AB、CD的中點,
∴AE=AB,CF=
CD.
∴AE=CF.
∴△ADE≌△CBF(SAS).
(2)解:當四邊形BEDF是菱形時,四邊形AGBD是矩形.
證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC.
∵AG∥BD,
∴四邊形AGBD是平行四邊形.
∵四邊形BEDF是菱形,
∴DE=BE.
∵AE=BE,
∴AE=BE=DE.
∴∠1=∠2,∠3=∠4.
∵∠1+∠2+∠3+∠4=180°,
∴2∠2+2∠3=180°.
∴∠2+∠3=90°.
即∠ADB=90°.
∴四邊形AGBD是矩形.
【解析】(1)在證明全等時常根據已知條件,分析還缺什么條件,然后用(SAS,ASA,SSS)來證明全等;
(2)先由菱形的性質得出AE=BE=DE,再通過角之間的關系求出∠2+∠3=90°即∠ADB=90°,所以判定四邊形AGBD是矩形.
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2012屆江蘇省灌云縣穆圩中學中考模擬數學試卷(帶解析) 題型:解答題
已知如圖在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥BD交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論。
查看答案和解析>>
科目:初中數學 來源:2013-2014學年山東青島市嶗山區九年級第一學期期末考試數學試卷(解析版) 題型:選擇題
已知,如圖,在平行四邊形ABCD中,∠ABC的平分線與AD相交于點P,下列說法中正確的是( )
①△APB是等腰三角形 ②∠ABP+∠BPD=180°③PD+CD=BC
④
A. ①②④ B. ①②③ C. ①③④ D. ①②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com