A. | 5個 | B. | 4個 | C. | 3個 | D. | 2個 |
分析 根據等腰三角形的判定,運用直角三角形的兩個銳角互余和角平分線的性質,證得∠CAD=∠BAD=30°,
CD=ED,AC=AE,即△ABD、△CDE、△ACE、△BCE是等腰三角形
解答 解:∵∠ACB=90°,∠B=30°,
∴∠BAC=60°,
∵AD是角平分線,
∴∠CAD=∠BAD=30°,
∴AD=BD.
∴△ABD是等腰三角形.
∵AD是角平分線,∠ACB=90°,DE⊥AB,
∴CD=ED
∴AC=AE
∴△CDE、△ACE是等腰三角形;
又△CEB也是等腰三角形
顯然此圖中有4個等腰三角形.
故選B.
點評 本題考查了等腰三角形的判定;要綜合運用直角三角形的兩個銳角互余和角平分線的性質,找到相等的線段,來判定等腰三角形.
科目:初中數學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com