分析 (1)①過點D作DF⊥x軸于點F,先通過三角形全等求得D的坐標,把D的坐標和a=-$\frac{1}{3}$,c=0代入y=ax2+bx+c即可求得拋物線的解析式;
②先證得CD∥x軸,進而求得要使得∠POB與∠BCD互余,則必須∠POB=∠BAO,設P的坐標為(x,-$\frac{1}{3}$x2+$\frac{4}{3}$x),分兩種情況討論即可求得;
(2)若符合條件的Q點的個數是3個,根據tan∠QOB=tan∠BAO=$\frac{OB}{OA}$=$\frac{1}{2}$,得到直線OQ的解析式為y=-$\frac{1}{2}$x,要使直線OQ與拋物線y=ax2+bx+c有一個交點,所以方程ax2-4ax+3a+1=-$\frac{1}{2}$x有兩個相等的實數根,所以△=(-4a+$\frac{1}{2}$)2-4a(3a+1)=0,即4a2-8a+$\frac{1}{4}$=0,解得a=$\frac{4±\sqrt{15}}{4}$,.
解答 解:(1)①過點D作DF⊥x軸于點F,如圖1,
∵∠DBF+∠ABO=90°,∠BAO+∠ABO=90°,
∴∠DBF=∠BAO,
又∵∠AOB=∠BFD=90°,AB=BD,
∴△AOB≌△BFD(AAS)
∴DF=BO=1,BF=AO=2,
∴D的坐標是(3,1),
根據題意,得a=-$\frac{1}{3}$,c=0,且a×32+b×3+c=1,
∴b=$\frac{4}{3}$,
∴該拋物線的解析式為y=-$\frac{1}{3}$x2+$\frac{4}{3}$x;
②∵點A(0,2),B(1,0),點C為線段AB的中點,
∴C($\frac{1}{2}$,1),
∵C、D兩點的縱坐標都為1,
∴CD∥x軸,
∴∠BCD=∠ABO,
∴∠BAO與∠BCD互余,
要使得∠POB與∠BCD互余,則必須∠POB=∠BAO,
設P的坐標為(x,-$\frac{1}{3}$x2+$\frac{4}{3}$x),
(Ⅰ)當P在x軸的上方時,過P作PG⊥x軸于點G,如圖2,
則tan∠POB=tan∠BAO,即$\frac{PG}{OG}$=$\frac{BO}{AO}$,
∴$\frac{-\frac{1}{3}{x}^{2}+\frac{4}{3}x}{x}$=$\frac{1}{2}$,解得x1=0(舍去),x2=$\frac{5}{2}$,
∴-$\frac{1}{3}$x2+$\frac{4}{3}$x=$\frac{5}{4}$,
∴P點的坐標為($\frac{5}{2}$,$\frac{5}{4}$);
(Ⅱ)當P在x軸的下方時,過P作PG⊥x軸于點G,如圖3
則tan∠POB=tan∠BAO,即$\frac{PG}{OG}$=$\frac{BO}{AO}$,
∴$\frac{\frac{1}{3}{x}^{2}-\frac{4}{3}x}{x}$=$\frac{1}{2}$,解得x1=0(舍去),x2=$\frac{11}{2}$,
∴-$\frac{1}{3}$x2+$\frac{4}{3}$x=-$\frac{11}{4}$,
∴P點的坐標為($\frac{11}{2}$,-$\frac{11}{4}$);
綜上,在拋物線上是否存在點P($\frac{5}{2}$,$\frac{5}{4}$)或($\frac{11}{2}$,-$\frac{11}{4}$),使得∠POB與∠BCD互余.
(2)如圖3,∵D(3,1),E(1,1),
拋物線y=ax2+bx+c過點E、D,代入可得$\left\{\begin{array}{l}{a+b+c=1}\\{9a+3b+c=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{b=-4a}\\{c=1+3a}\end{array}\right.$,
所以y=ax2-4ax+3a+1.
分兩種情況:
①當拋物線y=ax2+bx+c開口向下時,若滿足∠QOB與∠BCD互余且符合條件的Q點的個數不可能是3個
②當拋物線y=ax2+bx+c開口向上時,
(i)當點Q在x軸的上方時,直線OQ與拋物線y=ax2+bx+c必有兩個交點,符合條件的點Q必定有2個;
(ii)當點Q在x軸的下方時,要使直線OQ與拋物線y=ax2+bx+c只有1個交點,才能使符合條件的點Q共3個.
根據(2)可知,要使得∠QOB與∠BCD互余,則必須∠QOB=∠BAO,
∴tan∠QOB=tan∠BAO=$\frac{OB}{OA}$=$\frac{1}{2}$,此時直線OQ的解析式為y=-$\frac{1}{2}$x,要使直線OQ與拋物線y=ax2+bx+c有一個交點,所以方程ax2-4ax+3a+1=-$\frac{1}{2}$x有兩個相等的實數根,所以△=(-4a+$\frac{1}{2}$)2-4a(3a+1)=0,即4a2-8a+$\frac{1}{4}$=0,解得a=$\frac{4±\sqrt{15}}{4}$,
∵拋物線的頂點在x軸下方
∴$\frac{4a(3a+1)-16{a}^{2}}{4a}$<0,
∴a>1,
∴a=$\frac{4-\sqrt{15}}{4}$舍去
綜上所述,a的值為a=$\frac{4+\sqrt{15}}{4}$.
點評 本題是二次函數的綜合題,考查了待定系數法求二次函數的解析式,正切函數等,分類討論的思想是本題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com