分析 過E作EP⊥BC于點P,EQ⊥CD于點Q,△EPM≌△EQN,利用四邊形EMCN的面積等于正方形PCQE的面積求解.
解答 解:過E作EP⊥BC于點P,EQ⊥CD于點Q,
∵四邊形ABCD是正方形,
∴∠BCD=90°,
又∵∠EPM=∠EQN=90°,
∴∠PEQ=90°,
∴∠PEM+∠MEQ=90°,
∵三角形FEG是直角三角形,
∴∠NEF=∠NEQ+∠MEQ=90°,
∴∠PEM=∠NEQ,
∵AC是∠BCD的角平分線,∠EPC=∠EQC=90°,
∴EP=EQ,四邊形PCQE是正方形,
在△EPM和△EQN中,
$\left\{\begin{array}{l}{∠PEM=∠NEQ}\\{EP=EQ}\\{∠EPM=∠EQN}\end{array}\right.$,
∴△EPM≌△EQN(ASA)
∴S△EQN=S△EPM,
∴四邊形EMCN的面積等于正方形PCQE的面積,
∵正方形ABCD的邊長為a,
∴AC=$\sqrt{2}$a,
∵EC=2AE,
∴EC=$\frac{2\sqrt{2}}{3}$a,
∴EP=PC=$\frac{2}{3}$a,
∴正方形PCQE的面積=$\frac{2}{3}$a×$\frac{2}{3}$a=$\frac{4}{9}$a2,
∴四邊形EMCN的面積=$\frac{4}{9}$a2,
故答案為:$\frac{4}{9}$a2.
點評 本題主要考查了正方形的性質及全等三角形的判定及性質,解題的關鍵是作出輔助線,證出△EPM≌△EQN.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com