A. | 2$\sqrt{3}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | $\sqrt{3}$ | D. | 6 |
分析 先根據圖形翻折變換的性質求出AC的長,再由勾股定理及等腰三角形的判定定理即可得出結論.
解答 解:∵△CEO是△CEB翻折而成,
∴BC=OC,BE=OE,
∵O是矩形ABCD的中心,
∴OE是AC的垂直平分線,AC=2BC=2×3=6,
∴AE=CE,
在Rt△ABC中,AC2=AB2+BC2,
即62=AB2+32,
解得AB=3$\sqrt{3}$,
在Rt△AOE中,設OE=x,則AE=3$\sqrt{3}$-x,
AE2=AO2+OE2,
即(3$\sqrt{3}$-x)2=32+x2,
解得x=$\sqrt{3}$,
∴AE=EC=3$\sqrt{3}$-$\sqrt{3}$=2$\sqrt{3}$.
故選:A.
點評 本題考查的是翻折變換,熟知折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等的知識是解答此題的關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 90° | B. | 120° | C. | 60° | D. | 45° |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com