【題目】如圖,將邊長為6的正方形ABCD折疊,使點D落在AB邊的中點E處,折痕為FH,點C落在點Q處,EQ與BC交于點G,則△EBG的周長是 cm.
【答案】12
【解析】
試題根據翻折的性質可得DF=EF,設EF=x,表示出AF,然后利用勾股定理列方程求出x,從而得到AF、EF的長,再求出△AEF和△BGE相似,根據相似三角形對應邊成比例列式求出BG、EG,然后根據三角形周長的定義列式計算即可得解.
解:由翻折的性質得,DF=EF,
設EF=x,則AF=6﹣x,
∵點E是AB的中點,
∴AE=BE=×6=3,
在Rt△AEF中,AE2+AF2=EF2,
即32+(6﹣x)2=x2,
解得x=,
∴AF=6﹣=
,
∵∠FEG=∠D=90°,
∴∠AEF+∠BEG=90°,
∵∠AEF+∠AFE=90°,
∴∠AFE=∠BEG,
又∵∠A=∠B=90°,
∴△AEF∽△BGE,
∴=
=
,
即=
=
,
解得BG=4,EG=5,
∴△EBG的周長=3+4+5=12.
故答案為12.
科目:初中數學 來源: 題型:
【題目】對垃圾進行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護環境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區內的A,B,C,D四個小區進行檢查,并且每個小區不重復檢查.
(1)甲組抽到A小區的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區,同時乙組抽到C小區的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BE、CD 相交于點 A,連接 BC,DE,下列條件中不能判斷△ABC∽ADE 的是( )
A. ∠B=∠D B. ∠C=∠E C. D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,BD是⊙O的直徑,BA是⊙O的弦,過點A的切線CF交BD延長線于點C.
(Ⅰ)若∠C=25°,求∠BAF的度數;
(Ⅱ)若AB=AC,CD=2,求AB的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知中,
是
邊上的一點,
,
是
的外接圓,
是
的直徑,且交
于點
.
(1)求證: 是
的切線;
(2)過點作
于點
,延長
交
于點
若
求
的長;
(3)在滿足(2)的條件下,若求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=x2﹣2mx+m2﹣1與y軸交于點C.
(1)試用含m的代數式表示拋物線的頂點坐標;
(2)將拋物線y=x2﹣2mx+m2﹣1沿直線y=﹣1翻折,得到的新拋物線與y軸交于點D.若m>0,CD=8,求m的值;
(3)已知A(2k,0),B(0,k),在(2)的條件下,當線段AB與拋物線y=x2﹣2mx+m2﹣1只有一個公共點時,直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,將拋物線(m≠0)向右平移
個單位長度后得到拋物線G2,點A是拋物線G2的頂點.
(1)直接寫出點A的坐標;
(2)過點(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點.
①當∠BAC=90°時.求拋物線G2的表達式;
②若60°<∠BAC<120°,直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】對于一個關于x的代數式A,若存在一個系數為正數關于x的單項式F,使的結果是所有系數均為整數的整式,則稱單項式F為代數式A的“整系單項式”.例如:
當A=,F=2x3時,由于
=1,故2x3是
的整系單項式;
當A=,F=6x5時,由于
,故6x5是
的整系單項式;
當A=3-,F=
時,由于
=2x-1,故
是3-
的整系單項式;
當A=3-,F=8x4時,由于
,故8x4是3-
的整系單項式;
顯然,當代數式A存在整系單項式F時,F有無數個,現把次數最低,系數最小的整系單項式F記為F(A).例如:,
閱讀以上材料并解決下列問題:
(1)判斷:當A=時,F=2x3______A的整系單項式(填“是”或“不是”)
(2)解方程:
(3)已知a、b、c是△ABC的邊長,其中a、b滿足(a-5)2+=0,且關于x的方程|
|=c有且只有3個不相等的實數根,求△ABC的周長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com