分析 根據等邊三角形三線合一的性質可得D為BC的中點,即BD=CD,在直角三角形ABD中,已知AB、BD,根據勾股定理即可求得AD的長,即可求三角形ABC的面積,即可解題.
解答 解:∵等邊三角形高線即中點,AB=2,
∴BD=CD=1,
在Rt△ABD中,AB=2,BD=1,
∴AD=$\sqrt{A{B}^{2}-B{D}^{2}}=\sqrt{{2}^{2}-{1}^{2}}=\sqrt{3}$,
∴S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×2×$\sqrt{3}$=$\sqrt{3}$,
故答案為$\sqrt{3}$
點評 本題考查的是等邊三角形的性質,熟知等腰三角形“三線合一”的性質是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | y=-x2+5 | B. | y=x2-5 | C. | y=(x-5)2 | D. | y=(x+5)2 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com