日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
(2007•三明)如圖①,②,在平面直角坐標系xOy中,點A的坐標為(4,0),以點A為圓心,4為半徑的圓與x軸交于O,B兩點,OC為弦,∠AOC=60°,P是x軸上的一動點,連接CP.
(1)求∠OAC的度數;
(2)如圖①,當CP與⊙A相切時,求PO的長;
(3)如圖②,當點P在直徑OB上時,CP的延長線與⊙A相交于點Q,問PO為何值時,△OCQ是等腰三角形?

【答案】分析:(1)OA=AC首先三角形OAC是個等腰三角形,因為∠AOC=60°,三角形AOC是個等邊三角形,因此∠OAC=60°;
(2)如果PC與圓A相切,那么AC⊥PC,在直角三角形APC中,有∠PCA的度數,有A點的坐標也就有了AC的長,可根據余弦函數求出PA的長,然后由PO=PA-OA得出OP的值.
(3)本題分兩種情況:
①以O為頂點,OC,OQ為腰.那么可過C作x軸的垂線,交圓于Q,此時三角形OCQ就是此類情況所說的等腰三角形;那么此時PO可在直角三角形OCP中,根據∠COA的度數,和OC即半徑的長求出PO.
②以Q為頂點,QC,QD為腰,那么可做OC的垂直平分線交圓于Q,則這條線必過圓心,如果設垂直平分線交OC于D的話,可在直角三角形AOQ中根據∠QAE的度數和半徑的長求出Q的坐標;然后用待定系數法求出CQ所在直線的解析式,得出這條直線與x軸的交點,也就求出了PO的值.
解答:解:(1)∵∠AOC=60°,AO=AC,
∴△AOC是等邊三角形,
∴∠OAC=60°.

(2)∵CP與⊙A相切,
∴∠ACP=90°,
∴∠APC=90°-∠OAC=30°;
又∵A(4,0),
∴AC=AO=4,
∴PA=2AC=8,
∴PO=PA-OA=8-4=4.

(3)①過點C作CP1⊥OB,垂足為P1,延長CP1交⊙A于Q1
∵OA是半徑,

∴OC=OQ1
∴△OCQ1是等腰三角形;
又∵△AOC是等邊三角形,
∴P1O=OA=2;
②過A作AD⊥OC,垂足為D,延長DA交⊙A于Q2,CQ2與x軸交于P2
∵A是圓心,
∴DQ2是OC的垂直平分線,
∴CQ2=OQ2
∴△OCQ2是等腰三角形;
過點Q2作Q2E⊥x軸于E,
在Rt△AQ2E中,
∵∠Q2AE=∠OAD=∠OAC=30°,
∴Q2E=AQ2=2,AE=2
∴點Q2的坐標(4+,-2);
在Rt△COP1中,
∵P1O=2,∠AOC=60°,

∴C點坐標(2,);
設直線CQ2的關系式為y=kx+b,則

解得
∴y=-x+2+2
當y=0時,x=2+2
∴P2O=2+2
點評:本題綜合考查函數、圓的切線,等邊三角形的判定以及垂徑定理等知識點.要注意(3)中的等腰三角形要按頂點和腰的不同來分類討論.
練習冊系列答案
相關習題

科目:初中數學 來源:2007年全國中考數學試題匯編《三角形》(15)(解析版) 題型:解答題

(2007•三明)如圖①,②,在平面直角坐標系xOy中,點A的坐標為(4,0),以點A為圓心,4為半徑的圓與x軸交于O,B兩點,OC為弦,∠AOC=60°,P是x軸上的一動點,連接CP.
(1)求∠OAC的度數;
(2)如圖①,當CP與⊙A相切時,求PO的長;
(3)如圖②,當點P在直徑OB上時,CP的延長線與⊙A相交于點Q,問PO為何值時,△OCQ是等腰三角形?

查看答案和解析>>

科目:初中數學 來源:2007年全國中考數學試題匯編《二次函數》(07)(解析版) 題型:解答題

(2007•三明)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點.
(1)求A,B兩點的坐標;
(2)求拋物線頂點M關于x軸對稱的點M′的坐標,并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

科目:初中數學 來源:2009年陜西省中考模擬數學試卷(5)(金臺中學 楊宏舉)(解析版) 題型:解答題

(2007•三明)如圖①,②,在平面直角坐標系xOy中,點A的坐標為(4,0),以點A為圓心,4為半徑的圓與x軸交于O,B兩點,OC為弦,∠AOC=60°,P是x軸上的一動點,連接CP.
(1)求∠OAC的度數;
(2)如圖①,當CP與⊙A相切時,求PO的長;
(3)如圖②,當點P在直徑OB上時,CP的延長線與⊙A相交于點Q,問PO為何值時,△OCQ是等腰三角形?

查看答案和解析>>

科目:初中數學 來源:2009年湖南省長沙市大湖中學中考模擬數學試卷(解析版) 題型:解答題

(2007•三明)如圖①,②,在平面直角坐標系xOy中,點A的坐標為(4,0),以點A為圓心,4為半徑的圓與x軸交于O,B兩點,OC為弦,∠AOC=60°,P是x軸上的一動點,連接CP.
(1)求∠OAC的度數;
(2)如圖①,當CP與⊙A相切時,求PO的長;
(3)如圖②,當點P在直徑OB上時,CP的延長線與⊙A相交于點Q,問PO為何值時,△OCQ是等腰三角形?

查看答案和解析>>

科目:初中數學 來源:2007年福建省三明市中考數學試卷(解析版) 題型:解答題

(2007•三明)如圖,拋物線y=x2-2x-3與x軸分別交于A,B兩點.
(1)求A,B兩點的坐標;
(2)求拋物線頂點M關于x軸對稱的點M′的坐標,并判斷四邊形AMBM′是何特殊平行四邊形.(不要求說明理由)

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 九色视频在线播放 | 成人免费视频网站在线观看 | 日韩中文字幕网 | 3bmm在线观看视频免费 | 福利片免费观看 | 欧美一区二区免费 | 国产区视频在线观看 | 黄久久久 | 欧洲亚洲视频 | 高清视频一区二区 | 午夜视频在线观看网址 | 亚洲成人一区二区三区 | 国产91精品一区二区绿帽 | 一二三四区视频 | 91高清免费 | 久久69 | 日本福利在线 | 蜜桃精品久久久久久久免费影院 | 亚洲欧美国产一区二区三区 | 久久精品欧美一区二区三区不卡 | sese久久 | 亚洲福利视频在线 | 天堂视频中文字幕 | 亚洲精品电影在线观看 | 久久高清国产 | 久久国产香蕉视频 | 久久久夜夜夜 | 91久久综合亚洲鲁鲁五月天 | 国产精品11 | 国产成人精品一区二区三区视频 | 欧美日韩免费一区二区三区 | 九九久久精品 | 日本在线视频观看 | 久久人人爽av | 日韩毛片视频 | 成人av视| 黄色国产视频 | 久久国产精品99久久久久久老狼 | 爱爱视频在线观看 | 免费国产黄网站在线观看视频 | 国产99一区 |