A
分析:如圖,由AC⊥BC于C得到△ABC是直角三角形,然后可以求出∠ABC=180°-∠A-∠C=180°-20°-90°=70°,而∠ABC=∠1=70°,由于AB∥DF可以推出∠1+∠CEF=180°,由此可以求出∠CEF.
解答:

解:∵AC⊥BC于C,
∴△ABC是直角三角形,
∴∠ABC=180°-∠A-∠C=180°-20°-90°=70°,
∴∠ABC=∠1=70°,
∵AB∥DF,
∴∠1+∠CEF=180°,
即∠CEF=180°-∠1=180°-70°=110°.
故選A.
點評:本題比較簡單,考查的是平行線的性質及直角三角形的性質.