分析 (1)由∠ADB=∠AEC=∠BAC,于是得到∠ADB+∠ABD+∠BAD=∠BAD+∠BAC+∠EAC=180°,推出∠ABD=∠EAC,證得△ABD≌△AEC,根據全等三角形的性質得到BD=AE,然后根據線段的和差即可得到結論;
(2)由等邊三角形的性質就可以求出∠BAC=120°,就可以得出△BAD≌△ACE,就有BD=AE,進而得出△BDF≌△AEF,得出DF=EF,∠BFD=∠AFE,進而得出∠DFE=60°,就有△DEF為等邊三角形.
解答 (1)證明:∵∠ADB=∠AEC=∠BAC,
∴∠ADB+∠ABD+∠BAD=∠BAD+∠BAC+∠EAC=180°,
∴∠ABD=∠EAC,
在△ABD與△ACE中,
$\left\{\begin{array}{l}{∠ADB=∠AEC}\\{∠ABD=∠EAC}\\{AB=AC}\end{array}\right.$,
∴△ABD≌△AEC,
∴BD=AE,
∵DE=AD+AE,
∴DE=DB+EC;
(2)△DEF為等邊三角形
理由:∵△ABF和△ACF均為等邊三角形
∴BF=AF=AB=AC=CF,∠BAF=∠CAF=∠ABF=60°,
∴∠BDA=∠AEC=∠BAC=120°,
∴∠DBA+∠DAB=∠CAE+∠DAB=60°,
∴∠DBA=∠CAE.
在△BAD和△ACE中,
$\left\{\begin{array}{l}{∠BDA=∠AEC}\\{∠DBA=∠CAE}\\{BA=AC}\end{array}\right.$,
∴△ADB≌△CEA(AAS),
∴BD=AE,∠DBA=∠CAE.
∵∠ABF=∠CAF=60°,
∴∠DBA+∠ABF=∠CAE+∠CAF,
∴∠DBF=∠FAE.
在△BDF和△AEF中,
$\left\{\begin{array}{l}{FB=FA}\\{∠DBF=∠FAE}\\{BD=AE}\end{array}\right.$,
∴△DBF≌△EAF(SAS),
∴DF=EF,∠BFD=∠AFE,
∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,
∴△DEF為等邊三角形.
點評 本題考查了全等三角形的判定及性質的運用.等邊三角形的判定及性質的運用,等式的性質的運用,解答時證明三角形的全等是關鍵.
科目:初中數學 來源: 題型:選擇題
A. | 三邊中線的交點 | B. | 三條角平分線的交點 | ||
C. | 三邊垂直平分線的交點 | D. | 三邊上高的交點 |
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com