【題目】如圖,拋物線交
軸于
兩點,與
軸交于點
,連接
.點
是第一象限內拋物線上的一個動點,點
的橫坐標為
.
(1)求此拋物線的表達式;
(2)過點作
軸,垂足為點
,
交
于點
.試探究點P在運動過程中,是否存在這樣的點
,使得以
為頂點的三角形是等腰三角形.若存在,請求出此時點
的坐標,若不存在,請說明理由;
(3)過點作
,垂足為點
.請用含
的代數式表示線段
的長,并求出當
為何值時
有最大值,最大值是多少?
【答案】(1) ;(2) 存在,
或
;;(3) 當
時,
的最大值為:
.
【解析】
(1)由二次函數交點式表達式,即可求解;
(2)分三種情況,分別求解即可;
(3)由即可求解.
解:(1)由二次函數交點式表達式得:,
即:,解得:
,
則拋物線的表達式為;
(2)存在,理由:
點的坐標分別為
,
則,
將點的坐標代入一次函數表達式:
并解得:
…①,
同理可得直線AC的表達式為:,
設直線的中點為
,過點
與
垂直直線的表達式中的
值為
,
同理可得過點與直線
垂直直線的表達式為:
…②,
①當時,如圖1,
則,
設:,則
,
由勾股定理得:,解得:
或4(舍去4),
故點;
②當時,如圖1,
,則
,
則,
故點;
③當時,
聯立①②并解得:(舍去);
故點Q的坐標為:或
;
(3)設點,則點
,
∵,
∴,
,
∵,
∴有最大值,
當時,
的最大值為:
.
科目:初中數學 來源: 題型:
【題目】如圖,射線AM上有一點B,AB=6.點C是射線AM上異于B的一點,過C作CD⊥AM,且CD=AC.過D點作DE⊥AD,交射線AM于E. 在射線CD取點F,使得CF=CB,連接AF并延長,交DE于點G.設AC=3x.
(1) 當C在B點右側時,求AD、DF的長.(用關于x的代數式表示)
(2)當x為何值時,△AFD是等腰三角形.
(3)若將△DFG沿FG翻折,恰使點D對應點落在射線AM上,連接
,
.此時x的值為 (直接寫出答案)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發現如圖1,在和
中,
,
,
,連接
交于點
.填空:①
的值為______;②
的度數為______.
(2)類比探究如圖2,在和
中,
,
,連接
交
的延長線于點
.請判斷
的值及
的度數,并說明理由;
(3)拓展延伸在(2)的條件下,將繞點
在平面內旋轉,
所在直線交于點
,若
,
,請直接寫出當點
與點
在同一條直線上時
的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,對角線AC、BD相交于點O.E為邊AB上一點,且BE = 2AE.設,
.
(1)填空:向量 ;
(2)如果點F是線段OC的中點,那么向量 ,并在圖中畫出向量
在向量
和
方向上的分向量.
注:本題結果用向量的式子表示.畫圖不要求寫作法,但要指出所作圖中表示結論的向量.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點,
在反比例函數
的圖象上運動,且始終保持線段
的長度不變.
為線段
的中點,連接
.則線段
長度的最小值是_____(用含
的代數式表示).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市居民用水實行以戶為單位的三級階梯收費辦法:
第一級:居民每戶每月用水噸以內含
噸,每噸收水費
元;
第二級:居民每戶每月用水超過噸但不超過
噸,未超過
的部分按照第一級標準收費,超過部分每噸收水費
元;
第三級:居民每戶每月用水超過噸,未超過
噸的部分按照第一、二級標準收費,超過部分每噸收水費
元;
設一戶居民月用水噸,應繳水費
元,
與
之間的函數關系如圖所示,
(Ⅰ)根據圖象直接作答:___________,
_______________,
_______________;
(Ⅱ)求當時,
與
之間的函數關系式;
(Ⅲ)把上述水費階梯收費辦法稱為方案①,假設還存在方案②;居民每戶月用水一律按照每噸元的標準繳費.當居民用戶月用水超過
噸時,請你根據居民每戶月用水量的大小設計出對居民繳費最實惠的方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D、F分別是BC、AC邊的中點,連接DA、DF,且AD=2DF,過點B作AD的平行線交FD的延長線于點E.
(1)求證:四邊形ABED為菱形;
(2)若BD=6,∠E=60°,求四邊形ABEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,李林和王聰兩人在玩轉盤游戲時,分別把轉盤,
分成3等份和4等份,并標上數字(如圖所示).游戲規則:同時轉動兩個轉盤,當兩轉盤停止后,若指針所指兩個數字之和小于4,則李林獲勝;若數字之和大于4,則王聰獲勝,如果指針落在分割線上,則需要重新轉動轉盤.
(1)用列表法或畫樹狀圖法中的一種方法,求所有可能出現的結果.
(2)該游戲規則對雙方公平嗎?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了綠化環境,某中學八年級(3班)同學都積極參加了植樹活動,下面是今年3月份該班同學植樹情況的扇形統計圖和不完整的條形統計圖:
請根據以上統計圖中的信息解答下列問題.
(1)植樹3株的人數為 ;
(2)扇形統計圖中植樹為1株的扇形圓心角的度數為 ;
(3)該班同學植樹株數的中位數是
(4)小明以下方法計算出該班同學平均植樹的株數是:(1+2+3+4+5)÷5=3(株),根據你所學的統計知識
判斷小明的計算是否正確,若不正確,請寫出正確的算式,并計算出結果
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com