【題目】如圖,中,
,
,
是角平分線,則
的面積與
面積的比值是( )
A. B.
C.
D.
【答案】C
【解析】
根據等腰三角形的兩個底角相等和三角形的內角和定理,可以求得∠ABC=∠ACB=72°,根據角平分線定義,可得∠BCD=∠ACD=36°;根據兩角對應相等,得△DBC∽△BCA,則相似三角形的面積比是相似比的平方.設AB=x,BC=y,根據等腰三角形的性質,則AD=CD=BC=y,則BD=x-y.根據相似三角形的性質求得y:x的值即可.
設AB=x,BC=y.
∵△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°.
∵CD是角平分線,
∴∠BCD=∠ACD=36°.
∴AD=CD=BC=y,
∴BD=xy.
∵∠BCD=∠A=36°,∠B=∠ACB=72°,
∴△DBC∽△ABC.
∴.
即,
x2xyy2=0,
x=y(負值舍去).
則.
∴△DBC的面積與△ABC面積的比值是.
故選C.
科目:初中數學 來源: 題型:
【題目】如圖所示,已知矩形的邊長
,
,點
是
邊上的一動點
不同于
、
,
是
邊上的任意一點,連接
、
,過
作
交
于
,作
交
于
.設
的長為
,則
的面積
關于
的函數關系式是( )
A. B.
C. . D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:在Rt△ABC中, ∠ACB=90°,AC=BC, D是線段AB上一點,連結CD,將線段CD繞點C 逆時針旋轉90°得到線段CE,連結DE,BE.
(1)依題意補全圖形;
(2)若用含
的代數式表示
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】等腰Rt△ABC中,∠BAC=90°,AB=AC,點A、點B分別是y軸、x軸上兩個動點,直角邊AC交x軸于點D,斜邊BC交y軸于點E;
(1)如圖(1),已知C點的橫坐標為-1,直接寫出點A的坐標;
(2)如圖(2), 當等腰Rt△ABC運動到使點D恰為AC中點時,連接DE,求證:∠ADB=∠CDE;
(3)如圖(3), 若點A在x軸上,且A(-4,0),點B在y軸的正半軸上運動時,分別以OB、AB為直角邊在第一、二象限作等腰直角△BOD和等腰直角△ABC,連結CD交y軸于點P,問當點B在y軸的正半軸上運動時,BP的長度是否變化?若變化請說明理由,若不變化,請求出BP的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD相交于點O,AB⊥AC,AB=3,BC=5,點P從點A出發,沿AD以每秒1個單位的速度向終點D運動.連結PO并延長交BC于點Q.設點P的運動時間為t秒.
(1)求BQ的長,(用含t的代數式表示)
(2)當四邊形ABQP是平行四邊形時,求t的值
(3)當點O在線段AP的垂直平分線上時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】( 1)計算: ﹣4sin30°+(2015﹣π)0﹣(﹣3)2
(2)先化簡,再求值:1﹣,其中x、y滿足|x﹣2|+(2x﹣y﹣3)2=0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在同一平面內,若點P與△ABC三個頂點中的任意兩個頂點連接形成的三角形都是等腰三角形,則稱點P是△ABC的巧妙點.
(1)如圖1,求作△ABC的巧妙點P(尺規作圖,不寫作法,保留作圖痕跡).
(2)如圖2,在△ABC中,∠A=80°,AB=AC,求作△ABC的所有巧妙點P (尺規作圖,不寫作法,保留作圖痕跡),并直接寫出∠BPC的度數是 .
(3)等邊三角形的巧妙點的個數有( )
A.2 B.6 C.10 D.12
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com