日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

已知兩個全等的等腰直角△ABC、△DEF,其中∠ACB=∠DFE=90°,E為AB中點,△DEF可繞頂點E旋轉,線段DE,EF分別交線段CA,CB(或它們所在直線)于M、N.
(1)如圖1,當線段EF經過△ABC的頂點C時,點N與點C重合,線段DE交AC于M,求證:AM=MC;
(2)如圖2,當線段EF與線段BC邊交于N點,線段DE與線段AC交于M點,連MN,EC,請探究AM,MN,CN之間的等量關系,并說明理由;
(3)如圖3,當線段EF與BC延長線交于N點,線段DE與線段AC交于M點,連MN,EC,請猜想AM,MN,CN之間的等量關系,不必說明理由.

解:(1)∵AC=BC,E為AB中點,
∴CE⊥AB,∠ACE=∠BCE=ACB=45°,
∴∠AEC=90°,
∴∠A=∠ACE=45°,
∴AE=CE,
∵DF=EF,∠DFE=90°,
∴∠FED=45°,
∴∠FED=∠AEC,
又∵AE=CE,
∴AM=MC;                                   

(2)AM=MN+CN,理由如下:
在AM截取AH,使得AH=CN,連接BH,
由(1)知AE=CE,∠A=∠BCE=45°
∵在△AHE與△CNE中:
,
∴△AHE≌△CNE(SAS),
∴HE=NE,∠AEH=∠CEN,
∴∠HEM=∠AEC-∠AEH-MEC=∠AEC-∠CEN-MEC=∠AEC-∠MEF=90°-45°=45°,
∴∠HEM=∠NEM=45
∵在△HEM與△NEM中:
,
∴△HEM≌△NEM(SAS),
∴HM=MN,
∴AM=AH+HM=CN+MN;
即AM=MN+CN                                

(3)猜得:MN=AM+CN,理由如下:
在CB上截取CH=AM,
在△AEM和△CEH中,
,
∴△AEM≌△CEH(SAS),
∴EM=EH,∠AEM=∠CEH,AM=CH,
∵∠MEN=45°,∠AEC=90°,
∴∠AEM+∠CEN=45°,
∴∠CEH+∠CEN=∠HEN=45°,
∵∠MEN=∠HEN,
在△EMN和△EHN中,

∴△EMN≌△EHN(SAS),
∴MN=HN,
∴MN=CH+CN,
∴MN=AM+CN.
分析:(1)根據AC=BC,E為AB中點,得出CE⊥AB,∠ACE=∠BCE=ACB=45°,∠AEC=90°,∠A=∠ACE=45°,AE=CE,再根據DF=EF,∠DFE=90°,得出∠FED=45°,∠FED=∠AEC,即可得出AM=MC;                                   
(2)先在AM截取AH,使得AH=CN,連接BH,根據AE=CE,∠A=∠BCE=45°證出△AHE≌△CNE,HE=NE,∠AEH=∠CEN,∠HEM=∠AEC-∠AEH-MEC=∠AEC-∠CEN-MEC=∠AEC-∠MEF=90°-45°=45°,∠HEM=∠NEM=45°然后證出△HEM≌△NEM,HM=MN,最后根據AM=AH+HM=CN+MN即可得出答案;                                
(3)先在CB上截取CH=AM,根據SAS證得△AEM≌△CEH,得出EM=EH,∠AEM=∠CEH,AM=CH,再根據∠MEN和∠AEC的度數,得出∠CEH+∠CEN=∠HEN=45°,再在△EMN和△EHN中,根據SAS證得△EMN≌△EHN,得出MN=HN,即可求出答案.
點評:此題考查了全等三角形的判定與性質,用到的知識點是全等三角形的判定與性質、等腰直角三角形的性質,關鍵是做出輔助線,構造全等三角形.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知兩個全等的直角三角形紙片ABC、DEF,如圖(1)放置,點B、D重合,點F在BC上,AB與EF交于點G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.
(1)求證:△EGB是等腰三角形;
(2)若紙片DEF不動,問△ABC繞點F逆時針旋轉最小
 
度時,四邊形ACDE成為以ED為底的梯形(如圖(2)).求此梯形的高.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

已知兩個全等的等腰直角△ABC、△DEF,其中∠ACB=∠DFE=90°,E為AB中點,△DEF可繞頂點E旋轉,線段DE,EF分別交線段CA,CB(或它們所在直線)于M、N.
(1)如圖l,當線段EF經過△ABC的頂點C時,點N與點C重合,線段DE交AC于M,求證:AM=MC;
(2)如圖2,當線段EF與線段BC邊交于N點,線段DE與線段AC交于M點,連MN,EC,請探究AM,MN,CN之間的等量關系,并說明理由;
(3)如圖3,當線段EF與BC延長線交于N點,線段DE與線段AC交于M點,連MN,EC,請猜想AM,MN,CN之間的等量關系,不必說明理由.

查看答案和解析>>

科目:初中數學 來源:重慶市期末題 題型:解答題

已知兩個全等的等腰直角△ABC、△DEF,其中∠ACB=∠DFE=90°,E為AB中點,△DEF可繞頂點E旋轉,線段DE,EF分別交線段CA,CB(或它們所在直線)于M、N。
(1)如圖1,當線段EF經過△ABC的頂點C時,點N與點C重合,線段DE交AC于M,求證:AM=MC;
(2)如圖2,當線段EF與線段BC邊交于N點,線段DE與線段AC交于M點,連MN,EC,請探究AM,MN,CN之間的等量關系,并說明理由;
(3)如圖3,當線段EF與BC延長線交于N點,線段DE與線段AC交于M點,連MN,EC,請猜想AM,MN,CN之間的等量關系,不必說明理由。

查看答案和解析>>

科目:初中數學 來源: 題型:

已知兩個全等的等腰直角、△DEF,其中ACB=DFE=90,E為AB中

點,△DEF可繞頂點E旋轉,線段DE,EF分別交線段CA,CB(或它們所在直線)于

M、N.

  (1)如圖l,當線段EF經過的頂點C時,點N與點C重合,線段DE交AC

于M,求證:AM=MC;

  (2)如圖2,當線段EF與線段BC邊交于N點,線段DE與線段AC交于M點,連

MN,EC,請探究AM,MN,CN之間的等量關系,并說明理由;

  (3)如圖3,當線段EF與BC延長線交于N點,線段DE與線段AC交于M點,連

MN,EC,請猜想AM,MN,CN之間的等量關系,不必說明理由。

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美涩| 午夜剧场欧美 | www.一区二区 | 亚洲欧美视频一区 | 伊人干综合 | 欧美久久视频 | 国产精品免费一区二区三区四区 | 国产高潮好爽受不了了夜色 | 嫩草视频在线观看免费 | 国产视频一区二区 | 亚洲精品影院 | 国产免费中文字幕 | 国产色网 | 伊人日韩| 亚洲精品在线观看免费 | 欧美成人精品一区二区男人看 | 欧美午夜精品理论片a级按摩 | 欧美成人精品一区二区男人看 | 亚洲黑人在线观看 | 久久99精品视频 | 国产精品久久久久久无遮挡 | 99精品视频一区二区三区 | 石原莉奈一区二区三区免费视频 | 中文久久| 在线播放国产一区二区三区 | 国产精品一区二区久久久久 | 国产一区2区 | 久久精品免费 | 国产精品久久久久婷婷二区次 | 成人福利影院 | 亚洲免费视频在线观看 | 久久一本 | 超碰av在线| 成人综合av | 日韩精品久久久久久 | 国产aⅴ| 99国产精品 | 色视频免费看 | 国产精品视频免费 | 国产欧美精品一区二区 | 成人在线观看免费爱爱 |