【題目】若拋物線y=ax2+bx﹣3的對稱軸為直線x=1,且該拋物線經過點(3,0).
(1)求該拋物線對應的函數表達式.
(2)當﹣2≤x≤2時,則函數值y的取值范圍為 .
(3)若方程ax2+bx﹣3=n有實數根,則n的取值范圍為 .
【答案】(1)y=x2﹣2x﹣3;(2)﹣4≤y≤5;(3)n≥﹣4.
【解析】
(1)由對稱軸x=1可得b=-2a,再將點(3,0)代入拋物線解析式得到9a+3b-3=0,然后列二元一次方程組求出a、b即可;
(2)用配方法可得到y=(x﹣1)2﹣4,則當x=1時,y有最小值-4,而當x=-2時,y=5,即可完成解答;
(3)利用直線y=n與拋物線y=(x﹣1)2﹣4有交點的坐標就是方程ax2+bx-3=n有實數解,再根據根的判別式列不式、解不等式即可.
解:(1)∵拋物線的對稱軸為直線x=1,
∴﹣ =1,即b=﹣2a,
∵拋物線經過點(3,0).
∴9a+3b﹣3=0,
把b=﹣2a代入得9a﹣6a﹣3=0,解得a=1,
∴b=﹣2,
∴拋物線解析式為y=x2﹣2x﹣3;
(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴x=1時,y有最小值﹣4,
當x=﹣2時,y=4+4﹣3=5,
∴當﹣2≤x≤2時,則函數值y的取值范圍為﹣4≤y≤5;
(3)當直線y=n與拋物線y=(x﹣1)2﹣4有交點時,方程ax2+bx﹣3=n有實數根,
∴n≥﹣4.
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半徑為2,圓心角為60°,則圖中陰影部分的面積是( )
A. B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在⊙O中,直徑AB⊥弦CD于點F,點E是弧AD上一點,連BE交CD于點N,點P在CD的延長線上,PN=PE.
(1)求證:PE是⊙O的切線;
(2)連接DE,若DE∥AB,OF=3,BF=2,求PN的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.點D由點A出發沿AB方向向點B勻速運動,同時點E由點B出發沿BC方向向點C勻速運動,它們的速度均為1cm/s.連接DE,設運動時間為t(s)(0<t<10),解答下列問題:
(1)當t為何值時,△BDE的面積為7.5cm2;
(2)在點D,E的運動中,是否存在時間t,使得△BDE與△ABC相似?若存在,請求出對應的時間t;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,拋物線y=x2﹣4x+n(x>0)的圖象記為G1,將G1繞坐標原點旋轉180°得到圖象G2,圖象G1和G2合起來記為圖象G.
(1)若點P(﹣1,2)在圖象G上,求n的值.
(2)當n=﹣1時.
①若Q(t,1)在圖象G上,求t的值.
②當k≤x≤3(k<3)時,圖象G對應函數的最大值為5,最小值為﹣5,直接寫出k的取值范圍.
(3)當以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)為頂點的矩形ABCD的邊與圖象G有且只有三個公共點時,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在一幅長60 cm、寬40 cm的長方形風景畫的四周鑲一條金色紙邊,制成一幅長方形掛圖,如圖.如果要使整個掛圖的面積是2816 cm2,設金色紙邊的寬為x cm,那么x滿足的方程是( )
A. (60+2x)(40+2x)=2816
B. (60+x)(40+x)=2816
C. (60+2x)(40+x)=2816
D. (60+x)(40+2x)=2816
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有兩個可以自由轉動的質地均勻轉盤都被分成了3個全等的扇形,在每一扇形內均標有不同的自然數,如圖所示,轉動轉盤,兩個轉盤停止后觀察并記錄兩個指針所指扇形內的數字(若指針停在扇形的邊線上,當作指向上邊的扇形).
(1)用列表法或畫樹形圖法求出同時轉動兩個轉盤一次的所有可能結果;
(2)同時轉動兩個轉盤一次,求“記錄的兩個數字之和為7”的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com