日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

如圖,在圓O中AB是直徑,AT是經過點A的切線,弦CD垂直AB于P點,線段CP的中點為Q,連接BQ并延長交切線AT于T點,連接OT.
(1)求證:BC∥OT;
(2)若⊙O直徑為10,CD=8,求AT的長;
(3)延長TO交直線CD于R,若⊙O直徑為10,CD=8,求TR的長.

解:(1)取BP的中點E,連接QE;
∵Q是PC的中點,E是PB的中點,
∴QE為△PBC的中位線,QE∥BC;
∵AT為經過A點的切線,AB為直徑,
∴AT⊥AB,
∵CD⊥AB,
∴AT∥CD,∠TAO=∠QPE=90°,
∴△BPQ∽△BAT,
;
∵PB=2PE,AB=2AO,
,
∴△TAO∽△QPE,
∴∠AOT=∠PEQ,
∴OT∥QE;
∵QE∥BC,
∴BC∥OT.

(2)∠AOT=∠CBP;
∵CD⊥AB,AB為直徑CD=8,
∴CP=PD=4;
連接OC,在Rt△OCP中,
∵PC=4,OC=AB=5,
∴OP=3,
∴PB=OB-OP=2,
∴△ATO∽△CPB,
;
∵AO=AB=5,
∴AT=10.

(3)在Rt△OAT中,OT==5,
∵AT∥CR,
∴△AOT∽△POR,

OR=
∴TR=OT+OR=8
分析:(1)此題要通過構造相似三角形求解,由于P是CD的中點,由垂徑定理知CD⊥AB,有切線的性質可得:AT⊥AB,由此可證得CD∥AT,得BP:PQ=BA:AT,取BP的中點E,則PB=2QE,又因為BA=2OA,等量代換后可證得PE:QP=OA:AT,由此可得△PQE∽△AEO,根據相似三角形所得的等角,可證得QE∥OT,而QE是△PBC的中位線,則QE∥BC,根據平行線的傳遞性即可證得OT∥BC.
(2)(3)題可利用△ATO∽△CPB求出AT和OT的值,再利用△AOT∽△POR求出OR的值,從而解決問題.
點評:本題主要是考查切線的性質、三角形中位線定理、勾股定理及相似三角形的判定和性質.解題的關鍵是構造出與所求相關的三角形中位線,通過三角形中位線定理和圓的切線性質得出三角形相似,從而解決問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,在圓O中,點C是弦AB上一點,已知AC=1,CB:AB=7:8,OC=3
2

求:半徑OA的長及∠OAB的正弦值.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在圓O中AB是直徑,AT是經過點A的切線,弦CD垂直AB于P點,線段CP的中點為Q,連接BQ并延長交切線AT于T點,連接OT.
(1)求證:BC∥OT;
(2)若⊙O直徑為10,CD=8,求AT的長;
(3)延長TO交直線CD于R,若⊙O直徑為10,CD=8,求TR的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在圓O中,直徑MN⊥AB,垂足為C,則下列結論中錯誤的是( 。

查看答案和解析>>

科目:初中數學 來源:2009年福建省福州一中高中招生(面向福州以外)綜合素質測試數學試卷(解析版) 題型:解答題

如圖,在圓O中AB是直徑,AT是經過點A的切線,弦CD垂直AB于P點,線段CP的中點為Q,連接BQ并延長交切線AT于T點,連接OT.
(1)求證:BC∥OT;
(2)若⊙O直徑為10,CD=8,求AT的長;
(3)延長TO交直線CD于R,若⊙O直徑為10,CD=8,求TR的長.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 一本一道久久a久久精品蜜桃 | 国产精品久久久久久久久久久久久 | 国产成人精品久久二区二区 | 免费av黄色网址 | 99精品免费在线 | 自拍偷拍第一页 | 亚洲精品久久 | 免费国产视频在线观看 | 久久亚洲婷婷 | 国产一区二区三区四区在线观看 | 日韩一区不卡 | 国产精品久久久久久久久 | 日韩欧美一级在线 | 国产精品美女视频网站 | 夸克满天星在线观看 | 久久久久美女 | 国产视频一区二区 | 亚洲视频免费网站 | 日本小视频网站 | 在线播放一区二区三区 | 久草在线| 欧洲一级毛片 | 国产成人精品亚洲777人妖 | 成人国产精品久久久 | 欧美色综合一区二区三区 | 午夜久久av | 欧美视频精品在线观看 | 国产欧美综合一区二区三区 | 国产午夜精品一区二区 | 最新中文字幕 | 亚洲国产精品一区 | 久久夜夜 | 亚洲久久在线 | 中文字幕日本视频 | 久久久国产精品入口麻豆 | 免费一区 | 久久久久国产精品 | 久草视 | 久久久com| 国产精品99久久久久久动医院 | 亚洲欧洲在线观看 |