【題目】如圖,在四邊形ABCD中,AD∥BC,∠ABC=∠ADC=90°,對角線AC,BD交于點O,DE平分∠ADC交BC于點E,連接OE.
(1)求證:四邊形ABCD是矩形;
(2)若AB=2,求△OEC的面積.
【答案】(1)證明見解析;(2)1.
【解析】分析:(1)只要證明三個角是直角即可解決問題;
(2)作OF⊥BC于F.求出EC、OF的長即可;
詳解:(1)證明:∵AD∥BC,
∴∠ABC+∠BAD=180°,
∵∠ABC=90°,
∴∠BAD=90°,
∴∠BAD=∠ABC=∠ADC=90°,
∴四邊形ABCD是矩形.
(2)作OF⊥BC于F.
∵四邊形ABCD是矩形,
∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,
∴AO=BO=CO=DO,
∴BF=FC,
∴OF=CD=1,
∵DE平分∠ADC,∠ADC=90°,
∴∠EDC=45°,
在Rt△EDC中,EC=CD=2,
∴△OEC的面積=ECOF=1.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(3,3),B(5,3).
(1)已知點C(2,-4),求四邊形AOCB的面積;
(2)將線段OB先向上平移2個單位長度,再向左平移4個單位長度,得到線段O2B2,畫出兩次平移后的圖形,并求線段OB在兩次平移過程中掃過的總面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點是數軸上的兩點,
為原點,點
表示的數是1,點
在點
的左側,
.
(1)求點表示的數;
(2)數軸上的一點在點
的右側,設點
表示的數是
,若點
到
,
兩點的距離的和是15,求
的值;
(3)動點從
點出發,以每秒2個單位的速度向右運動,同時動點
從
點出發,以每秒1個單位的速度向右運動,設運動時間為
秒,是否存在這樣的
值,使
,若存在,請求出
的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是△ABC的中線,AN為△ABC的外角∠CAM的平分線,CE∥AD,交AN于點E.求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.
(1)求∠CBE的度數;
(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在每個小正方形邊長為1的方格紙中,△的頂點都在方格紙格點上.將△
向左平移2格,再向上平移4格.
(1)請在圖中畫出平移后的△ ;
(2)圖中AC和的關系 ;
(3)再在圖中畫出△的高
;
(4)= ;
(5)在圖中能使的格點
的個數有 個(點
異于C).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,過半徑為6的圓O上一點A作圓O的切線l,P為圓O的一個動點,作PH⊥l于點H,連接PA.如果PA=x,AH=y,那么下列圖象中,能大致表示y與x的函數關系的是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com